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Preface

There have been several trends over the last decade in pattern

recognition technology. For example, sensor technology has recently

provided a means of collecting high resolution range images (data) of

scenes and objects, and many individuals within the pattern recognition

community have been quick to recognize the promise of this new form of

data. Likewise, several realizations of spatially oriented parallel

processors have appeared increasingly promising with respect to

providing a real time method of processing the large volume of data

which are collected by imaging sensors. Neither of these technological

concepts are in reality new or original. However, the recent advances

in microelectronics and optical sensors have made the application of

these technologies realizable, even within the restrictive cost and size

Sconstraints of tactical military systems. Thus, when this dissertation

4was initiated, the goal was established to investigate analytical

methods of predicting the performance of a spatially oriented target

classification processor as applied to range images. This goal was

reevaluated and revised upon recognizing the following two

observations. First, the highly nonlinear behavior of neighborhood

transformations generally limit the statistical tractability of cellular

logic processors to Monte Carlo performance analysis techniques.

Secondly, due to the newness of both image quality .range data and

cellular logic processor technologies, no generally applicable method of

designing 3-D feature meaurement algorithms was available. Indeed,

only a few individuals were experimenting in this field, and it became

obvious that, in general, their approaches to algorithm design more

jiii
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closely resembled an art form than a science. Therefore, with the

sponsorship of the Air Force Avionics Laboratory, the uniqueness of 3-D

range data was investigated, and numerous neighborhood transformation

algorithm design techniques were developed and evaluated. Eventually,

an algorithm design technique emerged whioh appeared to exhibit the best

properties of several earlier approaches. This dissertation tutorially

describes this investigation, the algorithm design technique, and some

of its performance characteristics.

I would like to sincerely thank my advisor, Dr. Matthew Kabrisky,

of the Air Force Institute of Technology for his timely suggestions and

encouragement. The critical analysis and support of Dr. John Jones and

LtCol Joseph Carl of the Air Force Institute of Technology, Dr. Stanley

Robinson and Dr. Stanley Sternberg of the Enviorinental InstituLe of

Hichigan, Dr. Peter Hiller of the Perkin Elmer Corp., and Dr. Bradley

Sowers of General Dynamics (Convair) are also very much appreciated. I

would also like to thank Ms Karen Olin of Hughes Research Laboratories

for her helpfulness. Finally, the understanding and patience exhibited

by my wife, Marilyn, and daughter, Enily, can neither be underestimated,
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Abstract

The introduction of high resolution scanning laser radar systems,

which are capable of collecting data in the form of range and

reflectivity images, is predicted to have a profound influence on the

development of processors capable of performing autonomous target

classification tasks. The actively sensed range Images are shown to be

superior to passively collected infrared images in two areas: the

actively sensed range images are relatively insensitive to diurnal and

environmental variations, and the range images provide a direct measure

of the scene's three-dimensional shape rather than depending on thermal

variations to provide shape information. Additionally, the amount of

laser energy reflected from each surface in the scene can be measured,

thus providing an additional reflectivity image of the scene. An

approach to processing range images via cellular logic (neighborhood)

transformations is described, and a unique neighborhood transformation

algorithm selection procedure is developed and generalized to an extent

that geometric shape measurement algorithm s3lection can be performed in

a "cookbook* fashion. The concepts of residue set and residue set

spread functions are defined and shown to provide significant insight to

the feature extraction effectiveness and potential false alarm rate of

the algorithm under consideration. A hypothetical scenario and

processor architecture are described and the algorithm design approach

Is used to select a sequence of neighborhood transformations which

perform three-dimensional feature measurement of rectangular box and

truncated cone shaped geometrical objects. A Monte Carlo performance

analysis is used to demonstrate the utility of the design approach by

characterizing the ability of the processor to classify randomly

proo77o-
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positioned three-dimensional objects in the presence of additive noise,

scale variations, and other forms of image distortion. An illustrated

tutorial is provided to introduce the concept of neighborhood

transformations and to develop the two and three-dimensional erosion and

dilation operations which are used for noise filtering and feature

measurement within the proposed processor design.

(
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I. Introducion.

For many years man has attempted to construct machines which

perform tasks similar to those easily accomplished by most humans. For

example, machines capable of uniquely classifying two-dimensional

geometric objects such as printed letters, finger prints, or audiographs

have yet to be designed for use in an environment where variables such

as scale, rotation, font, background, energy, and noise cannot be

controlled. The problems associated with the classification of

three-dimensional objects compound these difficulties by adding a third

spatial dimension within which the objects can be translated and

rotated. Thus, very little success has been demonstrated in designing

machines which can autonomously (i.e. without human intervention)

acquire and classify tactical vehicles such as trucks, tanks or jeeps in

an uncontrolled environment such as a battlefield. Nevertheless, the

desirability of obtaining such a machine is obvious.

The difficulties encounte.,ed in attempting to totally describe

tactical targets and their backgrounds in either a Gestalt or

mathematical sense can generally be attributed to either the diurnal

variability of the data (which prohibits modeling the objects or

background as a stationary random process, Ref. 23) or the inability to

measure scene information that is directly related to the geometrical

shape of objects within the scene. Passively collected infrared (IR)

data is a classic example of a data base which exhibits both these

shortcomings. Since passive IR data is a measure of the thermal

emisuivity of the scene, it is very sensitive to diurnal variations such

an time of day, solar loading, moisture content and, to a certain

I



extent, environmental history. Likewise, thermal emissivity offers only

an indirect and relative measure of an object's shape. Thus, designers

of target classification algorithms have been forced to use ad hoc

features and suboptimal feature extraction/measurement techniques. A

more subtle but extremely relevant issue associated with the inability

to model targets, noise, and clutter is that, without such a model,

volumes of real world data must be collected for feature selection,

algorithm training, and processor performance evaluation purposes.

Additionally, more often than not, sensor peculiarities tend to make the

data collected with one sensor essentially useless for designing or

evaluating target classification processors which will use data

collected by other sensors. As a result, the expense associated with

collecting a statistically significant data base is inevitably

prohibitive and the data available for feature selection, algorithm

training, and evaluation is generally limited.

Fortunately, recent advances in sensor technology and practical

realization of parallel processor architectures may give a new lease on

life to the tactical target classification community. The Air Force

Avionics Laboratory has, through the Environmental Institute of

Michigan, recently demonstrated a limited capability to classify (and

possibly identify within classes) tactical targets in real time by

processing high resolution image quality range data in a spatially

organized parallel processor not dissimilar in design to that proposed

by Unger (Ref. 25). Even though other commercial and academic

institutions have also indicated varying degrees of success in this

area, the algorithm design and selection process of such a machine has,

unfortunately, remained an art and performance evaluations have

2



generally been limited to a few samples of real world data. This

dissertation will attempt to remove the mystery surrounding the

uniqueness of actively collected range data and to exploit the

consistency of this format of data by developing a unique "cookbook"

approach to processor algorithm selection and to evaluate the

performance trends of a processor designed in accordance with this

cookbook. Chapter II will first describe the virtues and uniqueness of

actively collected data as compared to the various forms of passive data

which have been historically available to the tactical target

classification community. Chapter III will then briefly describe

cellular logic processors and describe in greater detail a useful

variety of cellular logic operations (also known as neighborhood

transformations) and provide a tutorial description of some of their

applications and properties. Chapter IV then develops a step by step

approach to the design of a target classification processor which uses

cellular logic operations. The emphasis of Chapter IV is in using the

three-dimensional information content of the data and providing an

approach to shape classification algorithm selection which, when

combined with an appropriate decision criteria, supports low probability

of error and false alarm rate performance goals. Chapter V provides an

extensive Monte Carlo performance and parametric sensitivity analysis of

this processor and attempts to relate the demonstrated performance to

the operational appropriateness of the assumptions and design approach.

Chapter VI then summarizes the conclusions and provides recommendations

for future studies.

While a specific set of hypothetical targets is proposed, features

4selected and extracted, and performance indicated for a given processor

3



architecture, the reader's emphasis should remain with understanding the

advantages of working with active imagery and the various tradeoffr

associated with the proposed cellular logic design approach. For,

without understanding these issues, these technologies will remain an

art form.

(
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Historically, two generic forms of data have been available to the

tactical target identification community: actively collected data where

energy is transmitted and some measure of the reflected signal is

detected, and passively collected data where the detector senses only

naturally occurring reflected or radiating information. This chapter

will first briefly discuss the qualitative information content of each

data type and then compare these to actively collected image quality

range data. These comparisons will be made in the context of the

specific issues or problem areas associated with the tactical target

classification task.

Active & Passaive Data

Active sensors are generally capable of measuring the intensity of

the reflected signal as well as the phase or time delay between the

transmitted and received pulses. The intensity (energy) of the return

provides a relative measure of the surface reflectivity and the phase

can provide either an absolute or relative measure of range. Antenna

size and processing limitations imposed on tactical missile airframes

have not permitted active radar sensors sufficient angular resol'"A.on to

effectively extract three-dimensional target shape information from the

scene. Passively collected data such as television, photography and

infrared (IR) are capable of demonstrating image quality resolution.

However, range information is not readily accessible in passively sensed

data, and a direct measurement of a scene's three-dimensional

information content is not available. Thus, any information contained

in passively collected data relative to the scene's three-dimensional

!5
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shape must be extracted indirectly from the multigrey level intensity

data. An ideal tactical sensor might well combine the high resolution

capabilities of an imaging optical or IR sensor with the accurate range

measuring capabilities of an active sensor to provide image quality

three-dimensional range data.

The remainder of this chapter will describe specific tasks or

problems associated with tactical target identification and while doing

so illustrate the potential improvements (relative to passive data) that

three-dimensional range data provides. As a convenient notation, the

use of the term 3-D data will henceforth refer to multigrey level image

data in which the third dimension grey level provides relative or

absolute range information and the term 2-D data will refer to multigrey

level image data in which the third dimension grey levels represent

scene information other than range or height. Note that 2-D binary data

may refer to either thresholded (clipped) 3-D or 2-D data.

Tactical Target Classification Considerations

Every shape or object classification task has its unique and

complex idiosynchrasies and, without the existence of a general theory

which can be applied to all pattern classification tasks, one must

address the "physics" associated with the particular task at hand. In

such a manner, this section will briefly describe three specific data

related issues which pertain specifically to the task of identifying

targets in a tactical military environment. Relevant differences

between passively collected 2-D data and actively collected 3-D data

will be emphasized.

2Mz Leel Internretation. As described earlier, passively

(collected data depends solely upon sensing information which is inherent

6
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in the scene such as relative thermal temperature or reflection of

natural radiation. As a result, passively collected data is sensitive

to local temporal and spatial variations in the environment such as

ambient temperature changes, precipitation, humidity and solar radiance.

Hence, the grey levels of a given scene will in general not be ergodic

and will be statistically nonstationary (Ref. 23). Figures 1(a) and (b)

provide an example of the variable nature of passively collected

infrared data. There was a twelve hour delay between the collection of

the first and second images. Note that not only have the relative grey

levels of the scene changed, but the grey level rates of change (the

intensity gradients) have also varied noticeably. Variations such as

these are referred to as diurnal variations and are common to all forms

of passively collected imagery. To compound the problems associated

with diurnally varient data, passively collected data contains no direct

measurement of the scene's three-dimensional shapes or volumes. As a

result, passive data requires the use of features such as edge

gradients, corners, and areas of constant texture (which may or may not

be relevant to the true three-dimensional content of the scene) for the

target classification task.

Actively collected data, on the other hand, provides significant

improvements in the ability to interpret the grey level information.

First, because the sensor has its own radiating source and the velocity

of that energy is essentially constant, the reflected return signal will

provide (within the design limits of the sensor) the same time delay or

phase shift regardless of most environmental variations. Of course

there will be exceptions such as the loss of foliage from deciduous

(trees or shrubs and the accumulation and drifting of snow, but in

1 7



general, actively collected 3-D data is relatively insensitive to the

diurnal variations which have historically plagued passively sensed

data. Secondly, no longer must a system designer attempt to indirectly

extract three-dimensional information from the imagery. The imagery i&

the three-dimensional information! In this context, actively collected

3-D data is superior to passively collected 2-D data.

F Slcn Andinga C.nsideratons The selection of

features or discriminants which permit the identification of targets and

the rejection of nontarget objects and noise are of primary importance

in all pattern recognition tasks. There are generally an unlimited

number of features or eombinations of features which may be used to

separate tanks from trucks or trees such as weight, mobility, color,

smell or audible emissions. However, for the task of Classifying

objects on the ground as viewed from an airborne platform, the most

intuitively obvious features should be directly related to the

three-dimensional shape of the target.

As discussed in the previous section, the diurnal variability and

lack of directly measurable three-dimensional shape information in

passively collected data has forced target classification algorithm

designers to use various grey level normalization techniques and

gradient features such as edge., corners and texture. Since much effort

has been expended in developing and characterizing these techniques,

there is no need to abandon their use unnecessarily. However, before

applying these techniques, their application to 3-D data must be

reviewed and understood. Edges, for example, are no longer gradients

associated with changes in the scene's reflectivity, color or

temperature (as in 2-D data) but now become the points of two

%8
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intersecting surfaces. Likewise, areas of constant texture represent

surfaces in 3-D data and corners indicate the intersection of three

surfaces. Additional features now become available such as volume

measurements and height to length or width ratios and a high pass filter

becomes a potential terrain removal operation under certain scenarios

such as 3-D data collected from a look-down perspective. Thus, 3-D data

does not necessarily require a new set of features, noise filters, or

normalization techniques, but whatever techniques are used must be

understood as applied to the 3-D range information.

As a means to illustrate the results of applying a common operation

to both 2-D and 3-D data (and to demonstrate the insensitivity of 3-D

data to diurnal variations), an edge detection operation will be applied

to the images of Fig. 1(a) and (b) as well as to the same scene as

viewed with 3-D actively collected range data. The gradient measurement

technique selected for this example is the well known Kirsch operator

(Ref. 2) which is defined at the point X as

7
max(I,max[(aiai+1+ai+2 ) -3(a 3 .1 ... a ]()

i=O

a a 2
where the subscripts are evaluated modulo 8 for the aT X a nieghborhood

a a3

of X. If a threshold operation is applied to the image following the

gradient operator, edges can be defined as those gradients which have a

magnitude exceeding the threshold value. This threshold may either be

adaptive (related to the magnitude or variability of the gradients) or a

constant value depending on the complexity allowed the processor. The

Kirsch operator of Eq. 1 was first applied to the passively collected

(infrared) intensity images of Fig. 1, and an edge threshold was then

9
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applied to obtain the edge images of Fig. 2(a) and (b). Note that the

edges in these images correspond to the intensity transitions (i.e.

changes in surface temperature) in the scenes of Fig. 1(a) and (b)

respectively. Also note the obvious differences between the edge images

of Fig. 2(a) and (b). Since the same threshold was applied to both

gradient images, these differences can be attributed almost exclusively

to the diurnal variations exhibited by the passively collected data

during the 12 hour delay between scene samples. To contrast the edge

images of the passively collected scene data, Fig. 3(a) and (b) provide

the comparable edge images for the same scene but sampled with an active

(laser) range measuring sensor. Note in this case that the edges are no

longer related to the surface temperature of the scenes but instead

correspond to discontinuities in the range data. Also, the edge images

are almost identical which clearly illustrates the insensitivity of the

actively collected range data to diurnal variations in the scene.

As a final observation concerning the selection of features, when

range (or height) imagery is used, it may not be necessary to collect

and analyze large quantities of imagery data (as is necessary for

passive IR data) in the search of target features which are invariant to

diurnal variations. The diurnal consistency of 3-D data, when combined

with the true three-dimensional shape information contained in the data,

permits the a priori selection of potential target features (before

seeing any data). And, for the first time, tactical targets, clutter,

and terrain can be realistically modeled (either in software or physical

scale models) for Monte Carlo simulations or statistically modeled for

analytical performance comparisons. Conceptually, similar modeling

techniques could be applied to passively collected sensor information,

i/ 11
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but the necessity to be able to model many possible environmental,

(j seasonal and topographical scenarios not only makes the model quite

complex but also requires an extensive data base against which to design

the model. Such target and clutter modeling attempts have been and are

presently being made for passive IR scenes (Ref. 23), but success has

been limited primarily by the lack of a sufficiently robust data base

for design and validation purposes. In comparison, the generation of a

complete three-dimensional target and clutter model should be a low risk

task requiring only limited amounts of 3-D data for training and

validation.

Geomerical Distrtions. Just as a sample and hold circuit

provides a less than perfect discrete representation of a continuous

time varying wave form, the discrete range sampling of a three

dimensional scene also will result in a less than perfect discrete

representation of the scene. The spatial distortions which result from

such a digitization process are referred to as digitization or

quantization noise and the specific digital representation of a scene is

in general quite sensitive to the relative position of the scene with

respect to the digitizing grid. Additionally, in a system that requires

a finite amount of time to sample the scene, any motion of the

digitizing grid relative to the scene or objects in the scene will

induce additional distortions in the form of twisting or stretching of

the discrete image. In a tactical environment, the unpredictable

motion, translation, and rotation of objects of interest in the scene,

the dynamic capabilities of tactical airborne sensor (data collection)

platforms, and the finite spatial resolution of the sensors themselves,

(I combine to provide sufficient justification to discuss these forms of

IlI



* geometrical distortions in detail.

Figure 4(a) provides an example of the spatial variations which

occur when the height of a continuous three-dimensional hatbox shaped

object is placed upon and discretely sampled by a regular digitizing

point matrix. (Such a digitizing concept is not dissimilar to the

capturing of regularly positioned spikes by a randomly thrown hoop (Ref.

12) so often referred to in geometrical probability discussions.) It

can be seen in Fig. 4(a) that when moved to a different position on the

digitizing matrix, the digitized representation of the hatbox exhibits a

quite different shape. Note that once the continuous hatbox object is

positioned on the digitizing matrix, it can be rotated around its

central axis without affecting its digitized representation. Objects

which exhibit this property are defined to be rotationally invariant.

(Figure 4(b) provides the results of digitizing two samples of a shoebox

shaped object which is sensitive to both rotation and translation. In

this case, the digitized image of the rotated and translated object has

had one of its corners "rounded off" and its width and length are no

longer constant. Quite often the geometrical distortions associated

with digitization are surprising, especially in small (with respect to

the resolution of the digitizing matrix) objects.

Not only will static translation or rotation of a scene (with

respect to the digitizing grid) induce various forms of geometrical

distortions, any dynamic motion between the scene and the digitizing

matrix will also induce additional geometrical distortions to the

digitized image. For example, if the digitizing matrix sampled height

sequentially from left to right, one row at a time, and the hatbox and

shoebox objects described earlier were moving at a constant velocity

15
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across the digitizing matrix, the resulting digital representations of

4these objects would be skewed or stretched.

An equivalent method of portraying both the static and dynamic

digitization processes described above can be realized by positioning

the continuous objects (targets) on a surface (terrain) and sampling the

range from an airborne platform to the surface with a line scanning

range sensor. If the sensor platform passes over the terrain at a

velocity so that each scanned line (row) of data neither over nor under

samples the previous or next line of information, a topographical

representation of the digitized objects and terrain would be obtained.

Likewise, in this portrayal, geometrical distortions such as skewing or

stretching would be introduced by either movement of the objects beneath

the sensor or a constant roll or pitch rate in the sensor platform.

Finally, since the resolution cell size is proportional to the altitude

at which the sensor is carried above the terrain, a change in sensor

altitude will result in scale changes to the digitized image.

Unfortunately, geometrical distortions such as those described

above (digitization noise and sensor/target motions) are pervasive in

both active and passive data collection efforts. In systems which use

passive data, however, digitization noise and small platform

instabilities have not generally been of great concern to target

acquisition algorithm designers because the diurnal variability of the

data has demanded the lion's share of design effort. In systems

designed to use 3-D data, diurnal variations should no longer be the

driving limitation to algorithm development and, if the designer so

desires, the modeling of the above described geometrical distortions for

inclusion in performance analyses can be justified by the true

17
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three-dimensional information contained in the 3-D data.

In summary, the most obvious ad potentially far reaching

advantages that image quality actively collected range data has when

compared to similar resolution passively collected data would be the

ability to directly measure information which describes the

topographical (three-dimensional shape) content of the scene and that

this measure of information is not sensitive to most diurnal variations

of the environment. Related to these issues are potentially significant

improvements in the understanding and selection of features which are

directly related to the three-dimensional shape of the target, the

potential to select in an a priori manner target features, and the

ability to construct realistic target and clutter models for digital

system performance analysis. Chapters IV and V will consider each of

these characteristics in the design of the target classification

processor and its peformance analysis. However, Chapter III will first

describe the spatial operations known as neighborhood transformations.

A clear understanding of these cellular logic functions (and their

structuring element equivalent operations) is needed to understand the

design of the shape classification processor of Chapter IV.

(
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III. Nezhbrhoo Transformations

Neighborhood transformations (also referred to as cellular logic

operations) refer to a generic class of spatially oriented operations

which are closely related to the studies of computational geometry (Ref.

16) and cellular automata (Ref. 3). In a macroscopic sense, a

neighborhood transformation operates on an entire array of cells to

create a transformed array. The transformation, however, is a local

operator since the state of each cell in the new transformed array is

only a function of its present state and the states of its neighboring

cells. More specifically, the neighborhood transformation (T) of the

array (A) is defined as

TB(A) = T(A, B) (2)

where T B(A) is the transformed array and B is a local neighborhood of

cells which can be arbitrarily specified. In general, the five cell von

Neumann and the nine cell Moore neighborhoods of Fig. 5 are often used,

and the functional T can be any algebraic or Boolean expression. The

Kirsch operator described in Chapter II is an example of a cellular

logic operation. Before additional transformations are presented, a

brief review of pertinent historical and technical issues relating to

cellular logic operations and their mechanization is appropriate.

The early works of von Neumann (Ref. 26) were centered around

theoretical cellular automata concepts such as machine self-

reproduction. His work is described and the early theoretical works of

other authors are compiled in a comprehensive set of essays edited by

Burks (Ref. 3). A summary of more recent theoretical efforts is

19
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provided in the IEEE Proceedings on Cellular Automata, and the work of

Rosenfeld and Dyer (Ref. 22) at the University of Maryland illustrates

one of the more unique constructs being investigated.

The mechanization of a two-dimensional spatially organized parallel

processor was described by Unger (Ref. 25) in 1958. Since then,

numerous special purpose parallel processors have been designed to

perform various pattern recognition and image processing functions.

While the University of Illinois ILLIAC III (Ref. 14) and the CLIP (Ref.

6) machines designed at University College London appear to be the most

computationally powerful (Ref. 20), the Perkin-Elmer Corp. CELLSCAN

(Ref. 10) and GLOPR (Ref. 21) processors have enjoyed some success in

the commercial marketplace. The Environmental Institute of Michigan

(ERIM) is presently under contract with Harris Semiconductor through the

Air Force Avionics Laboratory to construct a large scale integrated

(LSI) circuit design of a programmable cellular logic stage which

promises to improve real time image processing capability. Throughout

this period of hardware development, many articles have been published

which describe useful geometrical and topological properties of cellular

logic operations. For example, McCormic (Ref. 14) and Golay (Ref. 7)

established a foundation for both regular hexagonal and rectangular

tesselation organizations and Grey (Ref. 8) addressed cellular

connectivity, Euler number measurement, and perimeter estimates.

Several French authors have also been active in this field, and their

approach of describing neighborhood transformations as "hit or miss"

operators is unique as is their concept of structuring element

operations. Some of their more descriptive efforts have been translated

and published in the Journal of Microscopy (Ref. 11). In summary, the

21



field of cellular logic processing has had a rich theoretical basis, and

a diverse number of investigators have actively participated in applying

cellular logic operations to image processing and pattern recognition

tasks. For a more detailed description of the theoretical aspects, the

bibliography by Nishio (Ref. 18) and article by Maruoka (Ref. 13) are

most recent. On the other hand, Preston, Duff, Levialdi, Norgren, and

Toriwaki (Ref. 20) provide a very complete summary of the more

applications oriented efforts in this field and include a very complete

(with the exception of the French authors mentioned above) list of

references.

The remainder of this chapter will describe specific neighborhood

transformations and sequences of transformations which will be used

later in the design of a target classification processor. Emphasis is

placed on developing and interpreting the geometrical relationships

associated with applying these operations to binary images in two and

three dimensions. The original tutorial instruction provided and

illustrative examples (which permit the logical transition of

two-dimensional operations to binary three-dimensional operations) will

be most appreciated by anyone who has attempted to extract and combine

similar information from any of the above referenced sources.

First to be described will be the dilation and erosion operations

which are the basic building block transformations. These two

operations are also referred to as expand and shrink functions, and the

specific geometrical operations they perform are often in agreement with

their descriptive names. Dilation and erosion have been used by Miller

(Ref. 15) to define a Boolean algebra which describes many cellular

coo. logic functions. The closure and opening operations are then described.

22
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These cellular logic operators are constructed by simple sequences of

dilation and erosion transformations, and they perform interesting

geometrical bounding functions. While neighborhoods such as the von

Neuman and Moore are commonly used, certain less common neighborhoods

will be described which are useful for more complex transformations

which skeletonize images and erode ends of line segments. Finally, the

concept of binary cellular operations will be expanded to

three-dimensions (multigrey level data) where dilations, erosions,

closures and openings are also quite useful. An additional sequence of

three-dimensional transformations which demonstrate properties similar

to a high pass filter when applied to three-dimensional surfaces is

described by Sternberg (Ref. 24) but is not used in the design of the

processor of Chapter IV. Suggested uses for these transformations are

discussed throughout the chapter, and emphasis is placed on describing

the capabilities and limitations of each in a .utorial manner. Specific

designs and applications will not be described until Chapter IV.

.Th Basic Transformations

Before defining the dilation and erosion transformations,

terminology common to neighborhood transformations will be reviewed.

The concept of a neighborhood simply refers to one or more spatially

related cells. However, a neighborhood (of cells) is always specified

with respect to a roo gell. Figure 5 provides several examples of

neighborhoods, each with its root cell marked with a "+". A gymmetrIenI

negrhood is any neighborhood which remains unchanged when reflected

through its root cell. Therefore, neighborhoods B1 and B2 of Fig. 5 are

(note that B1 is the reflection of B2  through its root

C cell) and the remaining neighborhoods are symmetrical with respect to

23



the specified root cells.

Quite often, neighborhood transformations are designed to perform

simple Boolean operations on binary images or binary surfaces (a binary

surface is multigrey level data which can be partitioned so that the

volume of cells on and below the surface are in state 010 and the volume

of cells above the surface are in state wO). In these cases, a

specified neighborhood can be considered a geometrical shape constructed

of state "10 cells (i.e. a srueturins element and the desired

transformation can be effected by simple binary additions and products

as the structuring element is appropriately positioned throughout the

image. Neighborhood transformations will be defined in terms of

structuring element operations whenever possible because they are easier

to describe (both conceptually and mathematically) and, as will be seen

shortly, the structuring element concept permits a direct means of

tracking the geometrical interpretations associated with sequences of

dilations and erosions. The concepts of root cells and symmetry as

described for neighborhoods apply also to structuring elements. The

basic concepts of dilation and erosion will now be defined in terms of

structuring element operations. Since the relationships described in

the following sections have either been proven by Miller (Ref. 15) or

demonstrated by Matheron et.al. (Ref. 11), their definitions and

descriptions are graphically illustrated and comparatively discussed to

provide the reader an understanding of the operations and their

potential applications.

Dilation. The dilation operation as applied to the state "1w cells

of a binary image (matrix)

2



A (ai, (3)

is defined as

DB(A) = ZB(a ij) Vaij 1 * a, A (4)

where B(a , J ) is a structuring element (neighborhood of state "1" cells)

positioned with its root cell at the ai,j cell of the image and the

summation specifies binary addition. Stated geometrically, the dilation

operation specifies the set of cells spatially covered by the

structuring element B(ai,j) as it is positioned at each-state "10 cell

of the binary image A. Figure 6(a) illustrates a binary image (A) and

two structuring elements B1 and B2 . The dilation of the image (A) using

the structuring elements B1 and B2 is illustrated in Fig. 6(b) as DB (A)

and DB(A) respectively. Note that the dilated images consist of the
2

original image (crosshatched in Fig. 6(b)) and those cells covered by

(,. the respective structuring elements state "1" cells as the structuring

elements root cell is positioned at each state "1" cell in the original

undilated _mage.

The dilation operation has commutative and associative properties

(Ref. 15) such that

DB(D,(A)) D (D.(A)) (5)B I B 2 B

and

DB(DB(A)) = DB(A) (6)
1 2 3

where
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S 3  D B(B 2) D B(B) 1 (7)
(.1 2

Thus, a sequence of dilations can be implemented by a single operation

using the larger structuring element B3  of Eq. 7. Figure 6(c)

illustrates the sequence of dilating the image (A) first with BI  and

then with B2 and the resulting image is labeled DB(DB(A)). Figure 6(d)
22

then illustrates the structuring element B3 and the dilation of the

image (A) using this larger structuring element. The verification of

Eq. 5 proceeds in the same manner. The definition of dilation insures

that the dilated image will always be at least as large as the original

image so that

A . DB(A) (8)

where the notation " ' is read "contained in" and implies that the

(spatially positioned set of state "10 cells in the image (A) is a

spatial subset of the state "I" cells of DB (A) so that the binary

product

A . DB(A) = A (9)

holds true. The equality of Eq. 8 holds for the structuring element

which consists of only a root cell.

Dilation is a many to one mapping. Figure 7(a) conceptually

illustrates the domain and range relationship for dilation, and Fig.

7(b) provides an example of three images (A,, A2 and A3 ), each of which

dilates to the same image D . The domain ( M ) of dilation can be

bounded by specifying that it consist of the set of all possible events

(binary images) that may occur on an N by N segent of a larger M by M

C

., .,Imll[ II I 27



CAP

a **

AD}

(a)

- I iI n nun minn.- - -I 'i11- 1
'-j

o •2  A

ii

-Structuring- 111
glement B

_- 1 "-

D- (A1 ) 1 1. 2, 3

(b)

Fig. 7. The hany To Una mapping of Dilation

2
" 28

!4



' ULLI -- 1' i II!

matrix. It is also assumed that all the cells outside the N by N matrix

'Jp are in state "0" and that M is sufficiently larger than N so that any

dilations applied to an image in the domain would not create an image in

the range that could not be contained in the M by M matrix. Since each

event of the range is the image of one or more events in the domain, the

dilation operation is onto (surjeotive) and the domain can be

partitioned into sets of events, each member of which, dilates to a

specific event in the range:

am = {A : A E ( , DB(A) - Dm ,DmE .). (10)

Figure 8 provides a one-dimensional example of the domain and range

relationships associated with a four cell (N=4) portion of a larger

(M>A) bit stream. The 2 possible events in the domain ( 0_ ) dilate to

one of five events in the range ( Z ) when the one-dimensional

structuring element B is used. Note that some, but not all, of the

events D " are also in . and visa-versa. For example, the null

0
event in the domain (0 ) maps to the null event in the range (D ), the

events A, thru A4 map (allowing translation) to the three cell event D
1

2 lm
and A 7 maps to the four cell event D . As an example of a set

the events N2 I A3 I A14 , and Al5 of Fig. 8 each dilate to the event

D of the range, thus

= A12 , A13 , A 1 4, A15 1.

It is obvious from the definition of dilation that the set of

events (n) will contain an image

C29
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AAX =mAZ AE C."J (12)

which is as large as or larger (contains more state "1" cells) than the

other members of the set. Event Al of Fig. 8 is an example of this

concept because, if another state "1" cell were added to A11 (or A10  ),

it would dilate to an image larger than D3 . Thus, the event Am. is an

upper bound on the size of events that can dilate to the event

Image A3 of Fig. 7(b) is another example of an image which is the

largest event that can dilate to the event D1  using the Moore

structuring element. It will be described later in this chapter that

the event A E Q m can be determined by applying an erosion operation

to the event Dm . This and other relationships between dilation

and erosion as well as potential uses for dilation in image processing

will be explored in the following sections.

(Erosion. The second commonly used neighborhood transformation is

the erosion operation. Erosion is defined in terms of the dilation

operation as

EB(A) = (DB(A))' (13)

where Ac is the complement of the binary image A, and it is formed by

changing the state "1" cells in the image (A) to state "0" and state "0"

cells to state '1". Figure 9 i.lustrates a step by step implementation

of Eq. 13 as applied to' the binary image labeled A and the structuring

element labeled B. The complement of the image A is first calculated

and then Ac is dilated using the unsymmetrical structuring element B to

form the Inag. labeled D B(A 0). The erosion operation is then completed
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by taking the complement of %(P) and the result is labeled (A).

( An equivalent (Ref. 11) erosion structuring element operation is

RB(A) = {aIjj : BI(ai j) KA , aijj = 1 , ai,jC A ). (14)

Using this definition of erosion, one can readily verify that the

reflected structuring element (labeled B') in Fig. 9 can only be

contained in the iage A at the same three positions earlier determined

to be the erosion of A. Stated more graphically, the erosion B (A) is

the set of positions at which the structuring element Bt fits into the

state "1" cells of the binary image A. Figure 10(a) illustrates a

binary image labeled A and two structuring elements labeled B1 and B2

The erosion of the binary image (A) using B1 and B2 are illustrated in

Fig. 10(b) as EBA) and EB(A) respectively. Note that these eroded
1 2

images consist only of the root cell positions at which the reflected

structuring element could be contained entirely within the state %1w

cells of the image A.

Sequences of erosions do not generally exhibit the same properties

(Ref. 15) as dilations. However, as in dilations, the order in which a

sequence of erosions is performed does not influence the results of a

given erosion sequence applied to an image. Thus,

EB(EB(A)) = EB(E B (A)) . (15)
1 2 21

And, as with dilation, a single erosion can replace a sequence of

erosions such as

EEB.(A)) E B (A) (16)1 u23

C
33



.

L+1
• I I I I-B

A B B

(a)

'I''

ZB(A) BA
(b) 2

I -I-

AEB(A) 21EBA)

B~~~~ ~ 3 B2DB(I

2 
(d)

F g. 10. Ezosion Pzope.rti.

34

"- ,r ...- .



where

B3= DB(B 2 ) = D(Bl). (17)
1 2

For example, Fig. 10(o) illustrates the sequence of eroding the image A

of Fig. 10(a) with structuring elements Bi and B2 sequentially, and the

resulting image is labeled EB(EB(A)). Figure 10(d) then illustrates
2 1

Eqs. 16 and 17 by first constructing the structuring element B3  by

dilating B2 with B1 (or equivalently dilating B1  with B2 ) and then

eroding the image A using this equivalent structuring element (B3 ).

Note that the reflected equivalent structuring element (B t ) fits in the
3

image (A) at only one position and that this position is the same cell

that remained following the sequence of erosions in Fig. 10(c). One

might also observe that the definition of erosion insures that the

eroded image will always be no larger than the uneroded image. Thus,

E B(A) .e A, (18)

and the equality holds for the structuring element which consists of

only one cell, the root cell.

Erosion, as was dilation is also a many to one funct'on. Figure 11

(a) conceptually illustrates the domain ( a ) and range ( ' )

relationships for erosion and Fig. 11(b) provides an example of three

images (A I , A2 , A 3 ) each of which erodes to the image labeled F.

If the domain of erosion is defined as the set of all possible binary

events which can occur on a bounded matrix, then each event of the range

is the image of at least one event in the domain (the erosion operation

is onto), and the domain can be partitioned into sets of events that

erode to common events in the range:
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an (A A E £,, EB(A) - En En EE (19)

Figure 12 again illustrates the 16 events which may occur in the domain

of a one-dimensional four cell matrix and demonstrates the erosion of

these events using the structuring element B. In this case, the range

consists of only three events. The null event E0 is the image of the

events in the set

0 = (A }, i 0,1,2,-,8,9,12,13,14 , (20)

E 1 is the iage of A10 and A , and E2 is the image of event A15

Referring once more to the definition of erosion (Eq. 14), observe

that a minimum sized image in the domain must exist for each event in

the range. For a given structuring element (B) and an event in the

range (EnE $ ), this minimum event is specified by the set of cells

covered by the reflected structuring element as its root cell is

positioned at each state "1" cell in the range event E . Obviously, any

image which does not contain this minimum event cannot possibly erode to

event En using the structuring element B. Thus, this minimum event

AMIN = B'(ai j) . (a, En aij = 1) . (21)
nn i~j

must be contained in each event A E 2. Stated in terms of dilationn

(note the similarity between Eq. 21 and Eq. 4),

AMIN = DB,(En) (22)
n B'

For example, the event A3 of Fig. 11(b) is the smallest event which can

erode to the event labeled E and that the dilation of E. using the
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structuring element B' results in the image A Finally, note that the

event AA of Eq. 12 can be specified by
HAX

= EB(D> (23)

for an event DP in the range of dilation and structuring element B. The

relationships of Eqs. 22 and 23 are basic to understanding the closure

and opening operations which are described later in this chapter.

However, as an aid to better understanding the dilation and erosion

operations, a brief discussion concerning their use in measuring

geometrical shapes will first be provided.

AiuU.2nsin Shae Heasroumt. A sequence of one or more

dilations will generally not be useful in shape discrimination unless

applied in conjunction with one or more erosions- One exception to this

observation is that dilations may be used to digitally construct

geometrical shapes which can then be used as decision templates.

Erosions, on the other hand, can be directly used to measure the

geometrical size and shape of binary images.

Consider the image A of Fig. 13(a) and assume that our goal is to

measure (i.e. geometrically describe in some sense) this image. Using

the structuring elements B and B2 of Fig. 13(a), a sequence of two

erosions using structuring element B followed by a single erosion using

structuring element B2 erodes image A to the four cell image labeled EB
x

(A). Recalling the definition of erosion (Eq. 14) and its associative

properties (Eq. 16 and 17), the image EB(A) describes the four positions
x

at which the equivalent structuring element (BI) of Fig. 13(b) fits into

the image A. (Note that for symmetrical structuring elements, B 2 B1.)

If, instead, the image A were eroded twice using structuring elements B1
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and twice again using B2 , the resulting image would be the null set (no

state "1" cells) because the equivalent structuring element for this

sequence of erosions, labeled By in Fig. 13(b), cannot fit into the

image A at any position. Thus, one might conclude that the structuring

element Bx was smaller than the image A and that B could fit into the

image A at four positions but that the structuring element By was too

large to fit into the same image. In other words, we have determined

that the image A was larger than the structuring element Bx and smaller

than the structuring element By . Unfortunately, this knowledge does

not totally characterize the image.

It should be quite apparent that the use of erosion sequences to

extract shape information from an image is highly dependent upon the

shapes of the structuring elements selected and that the information

extracted by an erosion sequence describes only a limited amount of

information about the image. A useful analogy can be made between

describing geometrical shapes by erosion sequences and the description

of a random variable by its central moments. In general, to completely

characterize a random variable, an infinite number of its moments are

required. Likewise, an infinite number of erosion sequences, each

specifying a unique set of structuring elements, will generally be

needed to completely characterize a geometrical shape. Each unique

erosion sequence would provide some shape-conditional information

pertaining to the image eroded. In a limited number of situations (for

example, where very little information is known about the classes of

objects), the use of arbitrary and/or random (Ref. 24) erosion sequences

may well be a viable technique to obtain features for unsupervised

clustering tasks. However, when a priori information concerning the



geometrical characteristics of the targets, clutter and noise is

available, there is little need for a *black artm erosion sequence

selection process. Specifically, a large portion of Chapter IV will

describe how to carefully select struoturing element erosion sequences

based upon a priori knowledge of the random and nonrandm information an

image may contain. This, when combined with an awareness of the limits

associated with geometrical measures such as erosion sequence image

characterization, will provide several useful insights and techniques

applicable to the algorithm selection process of cellular logic shape

classification processors in general. The following section describes

how combinations of erosions and dilations can be used for removing

geometrical distortions and noise from binary images.

Two-DiTmensionnal _ga I _Q~sn~t

As described earlier, the dilation operation generally increases

the size of objects (sets of state "I" cells) in binary images and, as a

result, may not be as useful for image characterization as erosion

sequences which erode (extract) information from an image. However, the

erosion sequence will be shown to be quite sensitive to additive noise

which may exist either as holes (state 0' cells interior to a group of

state "I" cells) or concavities (one or more state 00 cells which

protrude into the edge of a state 210 object) in the image. As a means

of clarifying these noise descriptive terms (i.e. holes, concavities,

and convexities), an analogy can be made to the geographical entities of

a continent (an object of state "I* cells) which is surrounded by an

ocean (field of state '0' cells). Continuing the analogy, a hole (a set

of state '0' cells) in an object is analogous to a lake interior to the

£ continent, a concavity would be analogous to an inlet or bay of state
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*O cells, and a convexity would be analogous to a peninsula of state

"1w cells extending into the ooean of state w0w cells. The remainder of

this section will describe the two-dimensional operations of closure and

opening and to evaluate their potential for removing holes, concavities,

and convexities from noise corrupted images.

Individually, erosion and dilation each exhibit some noise removal

properties but in doing so, distort the image. The operations of

opening and closure are an attempt to exploit the noise removal

properties of the erosion and dilation operations. For example, Fig.

14(a) provides a noise free image labeled (H), two symmetrical

structuring elements, and a noise corrupted version of the image (H)

which is labeled (A) and exhibits noise in the form of holes,

concavities, and convexities. Figure 14(b) illustrates the erosion of

the noise corrupted image (A) of Fig. 14(a) using the structuring

tF element B1 . The shaded cells in these illustrations indicate the cells

which were in state 81" prior to the indtcated operation. Note that the

eroded image EB (A) consists of only the three positions at which the
B1

structuring element B 1 could fit inside the image (A). Thus, one might

conclude that the erosion operation removed the convexities and reduced

the scale of the object. On the other hand, Fig. 14(o) illustrates that

the dilation of the image (A) using the same structuring element filled

in the hole and a concavity but in general left the convexities intact

and increased the scale of the object. In an attempt to use the noise

removal features of both dilation and erosion without changing the scale

of the image, simple sequences of dilations and erosions have been

applied (Ref. 11) to noisy images to remove (filter) the geometrical

distortions caused by noise. In particular, an erosion followed by a
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dilation using the symmetrical structuring element B is defined as the

.QLM of the image (A) with respect to the structuring element B,

AB z DC(F,(A)). (24)

Likewise, the alosure of the image (A) with respect to the structuring

element B is defined as

AB = EB(DB, (A)). (25)

Each of these noise filters will be illustrated and discussed and

observations will be made concerning their utility.

The opening of the image (A) using the structuring element B1  of

Fig. 14(a) is illustrated in Fig. 14(c) and labeled ABI. This result

was obtained by dilating the state 81" cells of the image in Fig. 14(b).

Note that the opening AB is smaller than the original noise free image

labeled H. Thus, due to the hole and concavities introduced by the

noise, the opening of the noisy image resulted in an image which is

significantly reduced in scale. To illustrate that the opening

operation is sensitive to the geometry of the selected structuring

element, observe that the erosion of (A) using the structuring element

B12 is the null set because B could not fit into the noisy image. Thus,

the dilation of the eroded image E4A) (i.e. the opening AB ) is also
2 2

the null set. The reader should observe that the erosion of the noise

free image H using either structuring element (B 1 or B results in a

square four cell image and that the opening of H using the B2

structuring element results in an image equal to H. An image which

exhibits the property

ABA (26)
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is said to be smooth with respect to opening by the structuring element

B.

The application of closure operations to the noise corrupted image

(A) of Fig. 14(a) is illustrated in Fig. 15. The noise free image H,

the symmetrical structuring elements B, and B2 , and the noisy image (A)

are repeated in Fig. 15(a), and Fig. 15(b) illustrates the closure of

(A) using the structuring element B1 . Note that the initial dilation

operation has filled in the hole and the other missing state "1" cells

but has increased the scale of the image. Therefore, the erosion of
B1

this dilated image (i.e. the closure A ) is relatively similar to the

original noise free image with the exception of the noise related

convexities. For comparison purposes, the dilation and closure of the

image (A) using the larger structuring element B is illustrated in Fig.

15(c). Observe that in this example, the images A 1 and A 2 are

identical except that the two noise related convexities on the left side

of the image have been joined (the concavity formed between the two

noise convexities has been filled in) by closure using the larger

structuring element B2 . In a similar manner, the closure of the noise

free image H results in an image equal to H for either the B1 or B2

structuring elements. Therefore, the image H is smooth under closure

with respect to either structuring element because

H =H. (27)

Recalling how Eq. 14 provided an alternative method of evaluating the

erosion operation of Eq. 13, there are alternate methods of evaluating

the opening and closure definitions of Eqs. 24 and 25. For example, an
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equivalent description of opening is

AB = ZBI(a 1 ) V BI(a ) A . (28)

Thus, the opening operation describes the set of cells spatially covered

by the structuring element B' as it is translated vertically and

horizontally interior to and contained in the state "10 cells of the

image. Likewise, the closure operation can be described as the set of

cells covered by the structuring element B as it is translated

vertically and horizontally interior to and contained in the complement

of the image. Thus,

AB = Z:B(ai j ) #Baij) A' - (29)

Stated in terms of the uncomplemented image, closure is the set of cells

not covered by the structuring element B as its root cell is positioned

&on every state "0* cell at which the structuring element does not

intersect a state "1" cell of the image. The reader should compare

these descriptions of opening and closure to the examples given in Figs.

14 and 15 and in particular observe that the only difference between AB 1

and A B2 in Fig. 15 was the result of the ability of the von Neumann

structuring element to fit into the concavity formed between the

convexities on the left side of the noisy image (A) and the inability of

the larger Moore structuring element (B2 )to perform the same task as the

root cell of each structuring element was positioned on state "00 cells

of the image.

Before directing the reader's attention to other classes of

cellular logic operations, Fig. 16 provides a graphical description of

the geometrical size relationships associated with the images formed by
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the opening and closure operations. The set of events (binary images)

in the domain is labeled a and is positioned between the opening

operation on the left and the closure operation on the right. For

simplicity of illustration, the larger indices imply larger binary

images: the smallest image being the null image A0  and the largest

image being an all state "I" image labeled An. As the first step of the

opening operation, the erosion of each event in the set of eventsausing

the structuring element B' results in the set of eroded images la-

beled Recalling earlier discussions, within each set of events Q.

that erode to an event E C , there exists an event AMIt ( which is
n n

the smallest event that can erode to the event E . Exploiting the sizen

ordering assumed for the events A E a , the null set (A0 ) is the

smallest image that will erode to the null set E (i.e. A = AMIN ) , the
0 0 0

event A is the smallest image that will erode to E (i.e. A = AMIN),
.44 1 4 1

etc. The opening operation is then completed by dilating each event EE

with the structuring element B. Referring to the definition of dilation

(Eq. 4), it is apparent that the dilation of each event E E e using the

structuring element B will reconstruct the minimum event A . There-
n

fore, the opening of an image,

AB = DB(EB, (A)) , (30)

specifies (constructs) the smallest image that can erode to the erosion

of the event (A). Thus,

A - AMIN= MIN[A c ]  (31)
B n j n

where

= (A : E(A ) = En IAJE{ ). (32)

n n
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Using similar observations, the closure AB of an image,

AB = EB(DB,(A)) ) (33)

constructs the largest event (dil) which can dilate to the dilation of

the image (A). Therefore,

A B= A;AX= MAX AJEa m ]

where

m = {A: D(A) = Dm A Cal (34)

While the relevance of these relationships may not be readily apparent,

they do provide some useful bounds on the many to one mappings

associated with opening and closure operations. In particular, it has

been shown (Ref. 15) that

A B K A A (35)

In a more philosophical vein, frequent referral to Fig. 16 will be

helpful in understanding the design and selection of two and three

dimensional noise filters in the following chapter.

In summary, the closure and opening operations each have their

unique capabilities and weaknesses, and the best operation to use for a

given application will depend upon the type of noise one might expeot to

encounter (holes, concavities or convexities) and the operations which

will follow the noise filter. For example, if some form of imagery was

much less susceptible to holes and concavities than convexities, then

the opening noise filter may be most appropriate. If, however, the data

were equally susceptible to all three forms of noise, then the closure

noise filter may be most useful since it generally removes two of the
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three noise types. And, if immediately following the noise filter a

series of erosions were used for shape or size discrimination (as is

commonly implemented), then closure would generally be the most

advantageous since, following the closure operation, any remaining

convexities would be removed by the subsequent erosion sequence.

Additional relationships concerning opening and closure operations are

discussed in the next chapter but, as is always the case, the selection

of an appropriate noise filter must be based on the physics of the

problem (and solution) at hand. The following section describes special

purpose two-dimensional cellular logic operations which will be used in

the processor design of Chapter IV.

Speca Purpose Transformations

The previous sections have described the two most comon cellular

logic operations (dilation and erosion) and two simple sequences of

( these operations (opening and closure). The definitions of these

operations have been in terms of structuring elements as applied to

binary images. This section will describe two additional

transformations which apply multiple nonsymetrical erosion sequences to

images. While these transformations could be described in terms of

complex sequences of structuring element operations, these operations

are most descriptively defined in terms of neighborhoods and transition

functions. Potential uses for the medial axis transformation (MAT) and

the end erode operation (EERO) will be described, but specific

applications will not be addressed until Chapter IV.

Thl Medisa Azis Tanafrrmtion. The medial axis transformation was

first proposed by Blum (Ref. 1) as a feature extraction technique and

many methods of its implementation are cited in Ref. 20. The medial
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axis transformation will in general operate on an image to form a

(skeleton of that image: each point or cell of that skeleton being

internal to the image and equally distant from the edges of the image.

Thus the medial axis transformation is often referred to as a central

axis transformation or a skeletonizing operation. Figure 17(a) defines

the medial axis transformation used in this study, and Fig. 17(b)

illustrates typical skeletons which are formed by the application of

this MAT to three binary images. The state "0" cells represent the

locations at which a state "10 cell has been changed to state "0 by the

MAT and the remaining skeletons are indicated by a "1". Note that the

skeletons are connected, are only one cell thick, and may contain one or

more branches. Historically, skeletonizing operations have been used as

a method of measuring an object's size or to normalize some uncontrolled

variable of an image such as the variations of line widths in printed

( -letters. More recently (Ref. 15) the MAT has been proposed as a data

compression technique. In the following chapter, the MAT will be used

in conjunction with an end erosion operation to extract additional shape

information from images once a basic size discrimination process has

been completed.

The Erosion Oeratn (EERO). The end erosion operation is

designed to detect cells of an image which ai'e either isolated or

connected to only one other cell and to remove (erode) these cells from

the image. In general, the EERO is applied as a noise removal technique

or as a method of detecting the ends of line segments (Ref. 3). The

ERO operation is defined in Fig. 18(a) and its application is

illustrated in Fig. 18(b) as applied three times to the skeletons of

Fig. 17(b). In Fig. 18(b), the state "1" cells of the skeleton which
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TRANSITION FUNCTION #

N1  N2  0 3 N 4

Change the state of cell Z from state "1" to state "0"
if its neighbors labeled X are in state "0" and its
neighbors labeled Y are in state "I". Otherwise,
the state of cell "/ remains unchanged.

TRANSITION FUNCTION # 2

N N N 7N5  6 7 8

Change the state of cell Z from state "I" to state "0"
if its neighbors labeled X are in state "I" and its
neighbor labeled I is in state "0". Otherwise,
the state of cell Z remains unchanged.

APPLICATION

(i) Apply transition funetion W I to each cell of the matrix
using neighborhoods 111, N N and Ii sequentially until
the transitions within thi marlx have stabilized.

(il) Apply transition function # 2 to each cell of the matrix
using neighborhoods W N Ai and N sequentially until
the transitions withia th ,marix have stabilized.

(Iii) hepeat (i) and (i) until both sequences are stable.

(a)

0 1
000010000 010 00001
00001 0000 001 00 001 1 1 1 1 1
111111111 11111 0011000
000010000 001 00 00111000
000010000 010 111000

010

(b2

C Fig. 17. The &idd&l Axis Tranformtion (PAT)
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T. lD I;RlSI .TM.SIT... FUN$TIU. .

For the neighborhood configuration, U ,
each state "1" cell of an image will be changed from
state "1" to state "0" if it and the states of its eight
nearest neighbors satisfy one or more of the following
neighborhood state configurations.

Nx;1GIBORHUUDSTATU NIGBOR STATS

WQNFIGUiiATIUN A .3 ; D F G ni I

1 0 0 0 o 1 0 0 0 0

2 0 0 # 0 1 # 0 0W

3 0 0 0 0 1 0 f if f

4 if 00 4 1.0 0 0

5 , if U 1 0 0 o0

N Neighbors which Indicate state "f" can be in either
state "I" or state "0". hiowever, simple checks are
made on these cells for each state configuration to
insure that connectivity within sets of state "I"
cells is retained.

(a)

0000kS0000 0h 0 00 00
0 O00 0000 0 0 00 001111 L 6
1 1I 1 4rk b. 6P 00 1 1000
0000. 10000 00z 0 0 00111000
0000 A0000 0= 60 gh -000

0 0

(b)

Fig. 8.The ArA arods Transformation ("HO0)
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were eroded (nibbled away) by the EERO are indicated by the letter "El.

( The end erosion operation can be used for several additional

purposes such as counting the number of cells in a line segment,

removing line segments from an image which are shorter than an arbitrary

number of cells in length, or to effect the separation of long single

branch line segments from line segments which exhibit multiple branches.

It is this latter task for which the EERO will be exploited in the

following chapter. However, before preceding to Chapter IV, the

concepts of two-dimensional cellular logic operations will be extended

to three-dimensions.

Three-Dimengional C a Login O.

The use of local spatial operations in three or more dimensions was

documented by Unger (Ref. 25) in 1958. As described in Chapter II, the

third dimension can represent intensity, range, height, or some other

measure of information, and cellular logic operations can be readily

applied to any of these types of data. Additionally, each

two-dimensional concept or operation described in this chapter has an

equivalent three-dimensional counterpart. For example, the concept of a

structuring element extends to a three-dimensional set of neighborinj

cubes which describe a structuring volume with respect to a root cell.

Likewise, while in two-dimensional binary space the state "10 cells are

partitioned from the state "0" cells by their edge boundary, in

multigrey level data, the surface described by the grey levels

partitions three space into volume sets if cubic cells above and below

the surface. Also, conveniently, the edge characteristics of

concavities and convexities extend directly to surface characteristics

C of depressions (valleys) and protrusions (mountains). Holes, as used

, C
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with respect to two-dimensional data, do not exist in single value

multigrey level data. If notation is established so that the cubes

below the grey level surface are in state "I* and those above the

surface are in state 00, binary volumes are established and a direct

comparison can be made between binary two-dimensional cellular logic

operations and their multigrey level counterparts. For example,

two-dimensional binary erosion wan earlier described as the root cell

positions at which a two-dimensional structuring element could be

contained in (i.e. fit into) an object/area of state *I" cells. Tn

multigrey level data, a comparable binary erosion operation would

specify the root cell positions (in three space) at which a

three-dimensional geometric solid (i.e. a three-dimensional structuring

element) could be contained in the state "1" cells of the binary volume

below the surface. Thus, if a three-dimensional structuring element is

(.. defined as B(ai,j,k ) when positioned at cell ai, Jk of an indexed

volume (A), then three-dimensional erosion is defined as

EB(A) = (ai,j,k : B(ai ,j,k) < A , ai,j,k = 1 , ai,j,kEA) (36)

where, as before, the symbol "<" requires that the three-dimensional

structuring element B' be contained entirely within the volume of state

'1 cells (i.e. does not protrude above the surface). Likewise, the

dilation of the binary volume (A) with the structuring element B is the

volume of cells spatially covered by the 3-D structuring element as its

root cell is positioned at each state 010 cell in three-space.

Therefor*,

D3(A) JB(a ijgk aij,k I a a,JkA . (37)
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While in two-space, erosion generally removed convexities from edges and

( made concavities larger; in multigrey level data, .se erosion operation

will remove mountains from the surface and make valleys deeper and

wider. Similarly, in binary two-space, dilation generally filled in

edge concavities and exaggerated convexities, whereas in multigrey level

data the dilation operation will fill in valleys and exaggerate

mountains. Thus, conceptually, the three-dimensional operations of

erosion and dilation perform noise filtering tasks quite similar to

their binary two-dimensional counterparts.

As with two-dimensional operations, sequences of three-dimensional

erosions or dilations generate larger equivalent three-dimensional

structuring elements, and three-dimensional closure and opening

operations perform similar noise removal tasks on three-dimensional

surfaces. Figure 19 illustrates the application of a three-dimensional

S- closure operation to a surface in three-space. Figure 19(a) illustrates

a vertical slice (possibly a scanned line) of multigrey level data which

contains both convexities and concavities. The closure operation using

a cubic (3x3x3) structuring element is applied to the slice of data of

Fig. 19(a) and the resulting slice is illustrated in Fig. 19(b). The

dashed lines of Fig. 19(b) illustrate the results of the dilation

portion of the three-dimensional closure operation. Note that the

dilation operation has vertically biased the surface (slice) by the

thickness of the 3-D structuring element (one cell), has removed the

concavities which were smaller than the three cell width of the 3-D

structuring element, and has thickened (exaggerated) both the large and

small convexities. Following the subsequent erosion operation, the

solid line of Fig. 19(b) illustrates the completed three-dimensional
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closure of the scan line in which t.%e bia_ has been removed, the

Cconvexities have been returned to their origi.al (,&re dilation) size,

and the large concavities (the concavities withiu wh.Lch the 3-D

structuring element could fit into) remain unchanged. Figure 19(c)

illustrates the results of applying a three-dimensional opening

operation to the scan line of data in Fig. 19(a). The dashed line

indicates the results of the intermediate (erosion) step, the solid line

indicates the completed opening, and the dotted lines the convexity

removed by the opening operation. In addition to closure and opening, a

third cellular logic operation is often considered for noise removal in

multigrey level data. This filter is a local averaging function in

which each cell's grey level is added to those of its eight nearest

neighbors and the average value of this sum is the new value for the

central cell. Figure 20(a) defines this local average noise filter, and

( -Fig. 20(c) illustrates the results of applying this to the scan line

slice of data illustrated in Fig. 20(b). The 3-D closure filter offers

an advantage over the local average 3-D filter in that it has the

potential to completely remove thin lines of correlated noise which is

often experienced in real world line scanning sensors. Figure 21(a)

illustrates a hypothetical example of a flat surface which, when

scanned, exhibited a missing or badly biased line of data. Figure 21(b)

illustrates the data of Fig. 21(a) following a local averaging noise

filter. Note that the depression was smoothed somewhat but that the

line of noise still remains obvious. Figure 21(c) provides the results

of applying a 3-D closure operation to the data of Fig. 21(a) using a

cubic (3x3x3) structuring element. While the 3-D closure operation

(:. totally removed the single line of noise, one must be cautious to select

C40
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(2 The local average function, A-AVG(A), as applied to
the i~j th cell of a two-dimensiona~l array, A - (ajJ

is defined as

a -* ai-+2J-+

k-1,3 1-1,3

where specifies arithmetic addition.

(a)

A slice of xultigrey level data (A)

(b)

AVG(A)

(c)

Fig. 20. The Local Average Function



(I Flat 3-1) surface (A)
with missing scan

(a)

Results of applying
the 3-Dl local avg.,
noise filter to
the surface (AV

(-

(b)

Results of applying
the 3-j) closure
noise filter to

fig- 21.* 3-D Closure and Average C~omparison
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a noise filter (and the corresponding structuring element) that does not

remove or significantly distort small convexities or concavities which

are necessary to the target identification task. In general, the

structuring element (or equivalent structuring element) must be smaller

than the smallest concavity or convexity one desires to retain as viable

information in the data (surface or edge). This subject will be

discussed at greater length with respect to the specific features and

targets selected in the next chapter. As stated before, the physics of

the random and nonrandom nature of the data and features must be

understood in order to intelligently select a reasonable

three-dimensional noise filter.

This completes the description of the two-dimensional and

three-dimensional cellular logic operations which will be considered for

use in the shape classification processor of Chapter IV. As described

earlier, the emphasis of this chapter was to convey a geometrical

understanding of several basic cellular logic operations and not to

dwell on proofs or demonstrations which are generally straight forward

and can be found in several sources (Ref. 1,8,11,15). Only "armed" with

an understanding of the operations and their geometrical interpretations

will the essence of the following become apparent.
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IV. Mab kr&MSA Design

This chapter provides a detailed description of how a cellular

logic processor may be designed to perform an autonomous target

classification task. Specifically, three hypothetical tactical targets

are described, and these targets are assumed to be scanned on a flat

surface by a nadir viewing range measuring sensor. Features which

measure the true geometrical shape information contained in the

three-dimensional (3-D) data are then selected, and noise and

geometrical distortions associated with these features inspire the

choice of noise filters. A unique design procedure is then developed

that enables the designer to select, in a "cookbook" manner, the

sequence of neighborhood transformations which will satisfy a specific

set of performance goals. An overall design of the target

classification algorithm is then developed and the false alarm rate

associated with this processor design approach is discussed.

b& Design Apoach

A review of the literature (see Chapter II) clearly confirms that

optimization techniques which rely on modeling input-output

relationships and noise sources and applying analytical cost functionals

have not been successfully applied to neighborhood transformation

processors. While some progress has been made in constructing modeling

tools for neighborhood transformation (Ref. 15) and statistically

bounding simple geometrical properties of some specific transformations

(Ref. 9), the nonlinear nature of these transformations and the

difficulty in defining the signal (i.e. what is "patterness") in a form

suitable for analytical modeling have limited the application of
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classical optimization techniques to pattern classification tasks.

Recognizing these difficulties, but not being satisfied with a

totally ad hoc design approach, an original systematic search technique

of algorithm optimization is proposed. This technique negates the need

to model the neighborhood transformations by applying a systematic

search through all sequences of neighborhood transformations that could

support a specific feature measurement requirement and evaluating each

sequence's effectiveness via a unique performance oriented evaluation

criteria. The characteristics of performance which form the basis for

the proposed evaluation criteria are the probability of detection (Pd ;

the probability of properly classifying a target), the probability of

false alarm (Pfa; the probability of improperly classifying a nontarget

object as a target), the probability of misclassification (Pmc ; the

probability of assigning a target to the wrong target class), and the

probability of miss (Pm; the probability of not detecting a given

target). Thus, while the selection of features and feature

extraction/measurement approach can be considered ad hoc (even though

well justified in a scenario, resolution, and geometrical sense), the

algorithm selection process is a rigorous sequence of step-by-step

procedures which can be applied as an algorithm optimization technique

to many feature - feature measurement pattern recognition tasks.

The design approach implemented can be summarized by the following

sequence of design steps.

a. Select two distinctive features which are common to each target

class.

b. Develop a generic approach to extract and measure these

features that can be implemented by neighborhood transformations.
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c. Using Monte Carlo simulations to accommodate geometric

variables, systematically apply all neighborhood transformations (that

could reasonably implement the feature measurement approach) to

digitally synthesized noise free targets.

d. Develop a unique evaluation criteria which directly relates

neighborhood transformation effectiveness to the performance goals of

high Pd and low Pfa and Pm.

e. Determine which sequence of neighborhood transformations best

satisfies the feature measurement task by applying the evaluation

criteria to the results of the neighborhood transformation search.

f. Apply a likelihood ratio test to the feature-class conditional

probability density functions (obtained from the Monte Carlo simulation

of c. above) to partition the feature space into accept-reject regions

for each feature and target class.

g. Define a strict class decision criteria which supports low Pme

and an alternate criteria which improves Pd by accommodating

similarities of features between target classes. While not an integral

part of the design procedure, three promising noise filters were

evaluated for their deterministic distortive effects on geometrical

objects and their ability to remove/smooth additive noise.

Finally, as in classical signal detection and estimation, the

design goals of high Pd and low error rates are antagonistic. Thus,

there were several instances during the design process that required a

design decision that would support only one of the two goals. When such

a conflict arose, the design approach most conducive to low false alarm

rate was generally selected. This decision was based upon the fact that

the lack of an accurate clutter (nontarget object) model prohibits a
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realistic evaluation of the design's false alarm rate. Therefore, only

by biasing the design toward a low false alarm rate could a bound on the

processor's error performance be established. For design purposes, it

was assumed that clutter was uniformly distributed over the features

selected (i.e. over the feature space). In summary, this conservative

design approach will provide a well understood baseline design against

which future design decisions can be based. However, before describing

the processor design, the scenario and other assumptions associated with

the targets, environment, scanner, and noise will first be presented.

One must be cautioned not to assume that the selection of appropriate

noise filters, features, or feature extraction techniques are

independent procedures as the chapter outline may hint. The various

design decisions are closely related, not only to the extent that they

influence each other, but also in that they are target, noise, and

scenario dependent. Throughout the following sections this

inter-relatedness will be described in detail; for herein lies much of
the "learning curve" associated with cellular logic processor algorithm

design.

TM1 Scnario Afl 2

This section will describe the scenario and assumptions associated

with the targets, sensor, the environment, and noise.

ThM Tarets. The targets are hypothetical and proportioned, as

illustrated in Fig. 22, to represent three classes of tactical vehicles

such as tanks or armored personnel carriers. The base of each vehicle

model is composed of a rectangular shoe-box shaped object and the tops

are modeled as horizontally truncated cones, the sides of which form 60

C degree angles with the horizontal plane. The length, width, and height
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of the bases and the height and base diameter of the tops are parameters

which vary between target classes. The units of length associated with

these target models can be described as "cell diameters" which are

directly related to the altitude and instantaneous field of view (i.e.

the spatial resolution) of the sensor.

.Th eona. The sensor is assumed to be an active range measuring

device which unambiguously estimates vertical distance. Figure 23

illustrates the geometries of a line scanning sensor which is designed

to collect a two-dimensional matrix (image) of range data. The sensor

platform is translated in the y direction at a constant velocity normal

to the direction of scan (the x direction) without over or under

sampling. An ideal spot model is assumed where each range measurement

provides the vertical (nadir) range as measured from the sensor to the

center of its instantaneous field of view on the earth's surface. While

the assumption that each range measurement provides information from a

nadir viewpoint is not physically realizable, it is a very good

approximation to range data which is collected within a few degrees of

vertical where shadowing will not be prevelant in the range

measurements. Thus, the multigrey level range measurements are made

available to the target classification processor as the third dimension

of a regular rectangular tesselation.

ThI wcioLnment. The terrain, upon which the targets shall be

randomly positioned and over which the scanner shall (conceptually)

pass, is assumed flat. 'While this assumption (of flat terrain) is in

general unrealistic, it was felt that presentation of the target models

on randomly orientea surfaces would interfere with exploring more basic

(sensitivities to parameteis such as noise, platform instabilities, and
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scale variations. Atmospheric anomalies such as fog, rain, snow, smoke,

cloud attenuation, and scattering are not specifically modeled.

However, since the noise model described in the following section was

obtained by observing the randomness of real data, at least some

uncalibrated amount of atmospheric noise/attenuation has been

accommodated in the 3-D noise model.

Ihe 3_-2 Noise Model. A brief analysis of two sources of

three-dimensional infrared range data was used as a basis for the 3-D

noise model to be described as normally distributed and white

(independent) in time/space. The data samples (each sample consisted of

about 400 data points) were all observed to be unimodally distributed,

but the normality of these distributions (as measured by a Chi Square

test) varied widely between the data samples. Additionally, the

normality of the sample distributions varied inversely with the

reflectivity of the various surfaces. These observations may be more an

analysis limitation than a scientific observation because the higher

reflective surfaces will generally provide improved range estimates and,

since the truth model of the terrain was not exact, the samples which

had nongaussian distributions could quite possibly be due to accurate

measurements of nongaussian terrain surfaces. There was also a tendency

for the data to be correlated for a distance of one or two cells in the

direction of scan (the x direction) and uneorrelated between scan lines

(the y direction). This was not unexpected since, in line scanning

sensors, the time between line samples is typically much longer than the

cell-to-cell sample times within a scan line of data. Thus, since the

data exhibited an obviot's unimodel tendency and was definitely normally

, distributed in several samples, a Gaussian noise model N(O, a 2 ) w
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adopted. The white nature of the noise was initially chosen to be the

worse case (unoorrelated vs correlated noise) and was later verified to

be so during Monte Carlo simulations. The 3-D noise model does not

incorporate clutter or other nontarget objects because insufficient data

were availale to aid in the design of such a model. However, an

arbitrary measure of false alarm rate is applied to the processor as

part of the Chapter V performance analysis.

In summary, the scenario consists of an airborn nadir viewing range

measuring sensor which is propelled at a constant velocity over a flat

terrain surface upon which randomly translated and rotated targets are

positioned. The format of the collected 3-D range data is

three-dimensional in that the third dimension grey levels provide a

discrete topographical description of the flat terrain and target. The

next section will now describe the architecture of the proposed

processor.

The cellular logic processor will consist of six parallel branches.

Each branch is designed to measure incoming 3-D data for the existence

of a specific geometrical feature associated with one of the three

targets. Figure 24(a) illustrates the generic operations performed in a

typical branch, and the design and purpose of each operation will be

described in detail later in this chapter. Note that the operations of

Fig. 24(a) have been grouped into three functional areas; noise

filtering, feature extraction, and the decision criteria. Using these

three functional areas, Fig. 24(b) illustrates how six branches are

combined to form the processor. While this description implies that all

the 3-D data is operated on by all six branches and that the operations
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within each branch are serially implemented, the actual physical

mechanization of a cellular logic processor may not necessarily follow

this approach. However, the parallel-serial architecture of Fig. 211(b)

does accurately portray the functional design and, for clarity of

presentation, was the approach selected for implementation on a general

purpose digital computer (CDC 6600).

fra= Select*on

Two features will be described for each target class. Since the

information content of the described data is unique in that it is truly

three-dimensional, the features are specifically selected to measure

three-dimensional target shape information.

Figure 25(a) illustrates a sample of a class 3 target scanned and

digitized in 3-D range data format. Rather than selecting gradient or

texture features as is commonly done with passive data, a more ancient

and simple technique of thresholding (not currently in favor with the

image processing community because of the diurnal variations evident in

passively collected imagery) will be used. The 3-D image of Fig. 25(a),

for example, would be thresholded at two levels; once at one-hal' the

height of the base, and a second time at one-half the height of the top

above the base. The thresholding operation is defined so that cells in

the threshold plane are assigned state 018 if the center of the cell

lies above the plane and state '00 otherwise. The results of

thresholding the top and base of a randomly positioned class 3 target is

illustrated in Fig. 25(b). The geometrical distortions exhibited by the

digitized and thresholded binary images are commonly referred to as

di itization noise and, because digitization noise significantly

influences the thresholded binary Images, any proposed shape
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classification algorithm must be relatively insensitive to this noise

source. Using the thresholds as defined above, the two resulting

features (2-D binary images) provide a three-dimensional measure of the

targets or any other objects on the terrain. This measure, of oourse,

does not totally characterize the geometrical shape of an object, and

very little imagination is required to describe nontarget objects which,

when thresholded, provide similar 2-D binary images. Ideally, however,

very few nontarget objects would match both binary images at the

thresholds selected for the class 3 targets. While it is possible

to more completely characterize three-dimensional objects by using

additional height thresholds, additional features such as corners,

edges, and curves, or using three-dimensional geometrical volume

measurements (similar the 2-D binary image area measurements

described In the previous chapter), the deoision was made to fully

exploit the unique qualities of actively collected three-dimensional

range data by limiting the number of features to two and keeping the

features extremely simple.

Additional forms of geometrical distortions and noise which are

typical to this form of imagery data will next be described and

appropriate noise filters proposed and discussed. One potential

distortion is introduced by the noise filters themselves (much as a low

pass filter smooths off rising and falling edges). Thus, the 3-D and 2-D

noise filters must be specified and their deterministio effects on the

selected features evaluated prior to feature extraction/measurement

algorithm selection.

Ma kl1AM LlZAI

This section will discuss the selection of the 3-D closure
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operation (vs local average or 3-D opening operations) as the noise

filter and describe how the choice of an appropriate 3-D structuring

element for use in the 3-D dilation-erosion (closure) sequence is

related to the size and shape of the smallest topographical feature of

interest. It will also be shown that the selected 3-D noise filter

directly impacts the need for and selection of an appropriate 2-D noise

filter.

The 3-D Noie .LeJ r. Under present assumptions, noise free three-

dimensional data representative of a scanned target would consist of a

multigrey level surface which contains two convexities; one which is

large and formed by the digitization of the randomly oriented shoe-box

base and a much smaller convexity formed by the digitization of the

truncated cone which is centrally superimposed on top of the base. In

order to evaluate how a 3-D closure or opening operation would

deterministically influence a noise free topographical surface such as

this, one should recall (from the previous chapter) that a 3-D closure

noise filter would, in general, remove small concavities (i.e. fill in

potholes within which the 3-D structuring element could not fit down

into) but leave convexities on the surface unchanged. Conversely, the

3-D opening operation would remove small convexities (i.e. clip off

bumps on the surface within which the 3-D structuring element could not

fit up into) while leaving concavities in the surface intact. Thus, the

use of a 3-D opening operation as a noise filter limits the size of

allowable 3-D structuring elements (and, hence, limits the size of

convex noise spikes that can be filtered) to those which can fit up into

the smallest convex 3-D feature (the top of target class three) or else

part or all of the convex feature would be removed by the noise filter.
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Since the selection of a 3-D structuring element for use in a 3-D

closure operation is not limited in this manner, the 3-D closure noise

filter would appear to be less limited in design flexibility and hence

more desirable. However, the earlier assumption that noise is

statistically independent implies that a large 3-D structuring element

is not required to remove noise since noise will "most often" appear as

independent spikes on or small potholes in the 3-D surface.

Additionally, while a 3-D closure operation which used a large 3-D

structuring element tay work quite well under the clutter free

environment assumed for this analysis, in a less academic environment a

3-D closure operation which uses a large 3-D structuring element would

tend to connect the target to other nearby surface convexities (trees,

buildings, other vehicles or terrain) if this large 3-D structuring

element could not fit down into the concavity which separates the target

from other convex objects. The following example will attempt to

illustrate these concepts by describing the 3-D closure and opening

operations as applied to a convex object in the presence of noise.

Figure 26(a) illustrates a 3-D surface realized by digitizing the

height of a shoebox shaped object, the sides of which are aligned with

the axis of a regular rectangular scanning grid. When using the 3-D

structuring element B, (of Fig. 26(a)), neither a 3-D closure nor a 3-D

opening operation will change (distort) the noise free surface labeled

H. This is because structuring element B1  can fit down onto/around

(closure) and up into (opening) each cell above and below the surface

respectively. Figure 26(b), on the other hand, illustrates the results

of applying a 3-D closure and opening operation to this same surface

using the seven cell 3-D structuring element labeled B2 . Note that the
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concave corners of the surface have been filled in by the closure

operation because the 3-D structuring element B2 could not fit down into

these cells without intersecting the surface. Likewise, during a 3-D

opening operation, the convex corners of the convex object were removed

because the 3-D structuring element B2 could not fit into these cells.

Since the 3-D opening operation reduced the volume of the convexity

significantly, when thresholded at one half the height of the original

shoe-box object (1.5 cells), its 2-D binary image, Th(HB ), is smaller

than Th(HB2 ) or Th(H).

Continuing the example, Fig. 27(a) illustrates the 3-D surface (H)

of Fig. 26(a) following its distortion by three kernels of additive

noise. A central vertical section of this noise corrupted surface is

also illustrated in Fig. 27(a) and the concavity and convexities formed

by the additive noise are labeled z1 , n2 , and n3 . Observe that the

41 concavity n2 and the convexity n3 have created a hole and an unconnected

state "1" cell respectively in the thresholded image Th(A). If the

surface labeled (A) of Fig. 27(a) is filtered by a 3-D closure operation

which uses the 3-D structuring element B1  (of Fig. 26(a)), the surface

and thresholded image of Fig. 27(b) are obtained. Note that the

concavity n2 has been filled in (because the structuring element could

not fit down into it) and that while the convexity n, remains

unchanged, the convexity r has become connected to the shoe-box object

because the structuring element could not fit into the concavity formed

between the convex noise spike 13 and the larger shoebox shaped

convexity. The application of a 3-D opening operation to the noise

corrupted surface of Fig. 27(a) results in the surface labeled A

illustrated in Fig. 27(c). Note that the 3-D opening operation has not
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only removed the convex noise spikes (n 1 and n 3 ) but has also removed a

Slarge portion of the larger convexity because the concavity has

prevented the 3-D structuring element (Bj) from fitting all the way up

into the shoe-box shaped convexity. The resulting threuholded image

Th(AB1 ) is the null set.

To conclude this example, Figs. 28(a) and (b) illustrate the result

of applying 3-D closure and opening operations to the noise corrupted

image of Fig. 27(a) using the seven cell 3-D structuring element labeled

B2  in Fig. 26(a). Note that the results of using this structuring

element are very similar to those obtained using the 27 cell structuring

element B1 . In each case, however, the thresholded binary images more

closely match the ideal (noise free) threshold image of Fig. 26(a) when

the 3-D closure and opening operations use the seven cell B2 structuring

element. This of course will not always be the case. However, under

the present assumptions and for small convex features of interest, the

3-D closure operation using the B structuring element will generally be

more useful than a 3-D opening operation because it will retain

sufficient convexity to provide a 2-D threshold image while a single

noise concavity could cause a 3-D opening noise filter to erode the

available information to heights below the threshold value. Therefore,

even though the 3-D closure noise filter can potentially enlarge

portions of convex features and connect nearby objects to targets of

interest, the 3-D closure operation retains all of the available

convexity information of the noisy 3-D data as well as fill in small

concavities which may appear in the surface. Thus, following a 3-D

closure operation, the thresholded 2-D image will at least contain the

thresholded 2-D image obtained by thresholding the unfiltered 3-D
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surface. This relationship san be described as

CTh(A) I Th(A) (38)

where Th( ) is the height threshold operation, A in a 3-D surface of

multigrey level data, and AB is the closure of the surface A using the

3-D structuring element B. Equation 38 is a direct extension of the

two-dimensional relationship of Eq. 35 for a 2-D binary Imae consisting

of state 010 cells in a state 00 field. In three space, the convention

of state '1' cells being below the surface and state '0 cells being

above the surface extends to the concept that the surface resulting from

a 3-D closure operation will cover the unfiltered surface (i.e. the

unfiltered surface will be below or equal to the 3-D closed surface).

The results of thresholding surfaces sharing this relationship should be

obvious.

A third potential 3-D noise filter earlier described as a local

averaging function was not selected for use because, unlike 3-D closure,

it does not exhibit the ability to totally remove noise which is either

uncorrelated or correlated in one direction (as illustrated in Fig. 21)

and a relationship similar to Eq. 38 cannot be shown for an unfiltered

surf ace and its locally averaged counterpart.

In sumary, the 3-D closure noise filter was selected because, in a

noisy environment, it removed concavities in the 3-D surface without

reducing the size of any convexities that may exist on the 3-D surface.

This property of 3-D closure operations is most important since the

target models appear as convex objects in three-dimensional height data.

The 3-D closure operation will use the seven cell 3-D structuring

element labeled i2 in Fig. 26(a) because it is large enough to remove
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independent or slightly correlated concavities in the surface as well as

fill in occasional missing lines of scanned data. This same structuring

element should be small enough to prevent unnecessary surface growth due

to connecting the convex target objects to nearby convex noise spikes or

other convex objects. The local average and 3-D opening filters were

not selected because they did not exhibit the ability to totally remove

concavities nor did they retain all the convexity information available

within the unfiltered 3-D surface. The selection of this 3-D noise

filter has been shown to be closely related to the noise

characteristics, the size and nature of the smallest 3-D features of

interest, and the method by which the 3-D feature is measured (i.e.

thresholding). The following section will now describe how the 3-D

closure noise filter, when combined with the erosion method of measuring

thresholded 2-D images, directly influences the need for a 2-D noise

filter.

lhi 2-] Noise Z1Jter. This section will discuss how the geometries

of the targets, the use of a 3-D closure noise filter, and a yet to be

described method of feature measurement combine to negate the need for a

2-D noise filter operation.

In Chapter III, it was suggested that a 2-D closure operation could

be used to fill in holes or edge concavities of state "O cells in 2-D

binary state 01w objects. For a 2-D binary object (obtained, perhaps,

: by thresholding the shoe-box shaped base of a target model) to contain a

hole or edge concavity, one or more of the cells describing the top

surface must be corrupted with noise to a height below the threshold

value. If the noise free height of the i,j th cell of an object is
in

and the threshold value selected is Th, then a zero mean additive noise
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source (7) would induce a hole in the surface's thresholded Image if the

realization of noise xI, had a value such that

I + xi < Th (39)

The probability of a hole or concavity occuring at the i, j th position

of a binary image formed by thresholding a noise corrupted 3-D surface

is

P [ac, 3 + xJ< Th] =fxi.(x)dx = p (4t0)

where ft(x) is the probability density function of the noise source.

Recalling that a 3-D closure operation can be used to fill in surface

concavities within which the 3-D structuring element cannot fit down

into, the application of a 3-D closure operation to a 3-D surface

insures that a hole or concavity will not exist in the thresholded 2-D

image of that surface unless the 3-D structuring element fits down into

the concavity on the 3-D surface to at least a depth below the threshold

height. Therefore, if prior to thresholding, the 3-D surface were

filtered using a 3-D closure operation that used a 27 cell (3x3x3) 3-D

structuring element, the probability of a hole existing in the

thresholded 2-D binary image would be p9 assuming spatially independent

noise. Likewise, the probability that any cell on the edge of the me

2-D binary image would exhibit a concavity would again be p for an

unfiltered surface and no more than p4 for a 3-D closure filtered

surface. The probability of such an event occuring Is, of course,

finite and is related to the shape and size of the 3-D convexity within

* which the concavity may occur as well as the shape of the structuring
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element. However, the application of a 3-D closure noise filter

Coperation to the 3-D data prior to thresholding will generally make the

probability of a hole or concavity ooouring in the 2-D binary Image very

small, hence, negating the need for a 2-D closure noise filter.

The other potential 2-D noise filter discussed in Chapter III was

the 2-D opening filter which was effective in removing edge convexities

and small unconnected cells of state 010 noise. Since the 3-D closure

operation was shown not to be effective in removing 3-D surface

convexities which, when thresholded, form these convex forms of 2-D

noises, the need for a 2-D opening noise filter appears quite logical

and appropriate. However, the next seotion will shortly describe that

the initial step used to measure the size and shape of the 2-D binary

images is a sequence of one or more erosion operations. Thus, assuming

the sane 2-D structuring elements would be used, any convexities present

( in the 2-D images which would have been removed by a 2-D opening

operation would also be removed by the shape measurement erosion

sequence and a 2-D opening operation would therefore be redundant. In

the event that 3-D features are selected (or noise is experienced) which

invalidates any of these assumptions, then the geometries associated

with this modified environment should be reviewed to determine 2-D noise

4 filter requirements.

The circular and rectangular images obtained by height thresholding

the scanned target models were selected as features because they provide

simple but unique 2-D measurements of each target's 3-D geometrical

volume. This section will describe an approach to measure thes

features. The circular feature vil be measured by simple erosion
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sequences while the more complex rectangular features require additional

processing to extract shape information. Significant issues which

directly influence the performance of the processor such as target

translation and rotation, algorithm selection, processor architecture,

and the probability of false alarm rate will be specifically addressed.

£m . When thresholded, the truncated conical tops

of eaoh target *lass will result in circular 2-D disk shaped objects.

However, due to the finite resolution of the digitizing grid (i.e. the

scanning soeoor) and the assumed random positioning of the target on

this grid, maW 2-D binary Image realizations can be experienced for

each digitized target top. Several typical examples of thresholded

target tops for each target class are illustrated in Fig. 29. This

section will describe how a simple erosion sequence can be selected to

provide a useful geometrical measure of digitized randomly positioned

C.circular disks of arbitrary radius.
In Chapter III, each of the cells remaining in state 010 following

an erosion sequence were shown to be the root cell positions at which

* the erosion sequence's equivalent structuring element fit into the state

018 cells of the uneroded binary Image. Thus, by counting the naber of

residue cells (the state "I" clls which remain following an erosion

sequence), a limited measure of size information relative to the

*uneroded image and the equivalent structuring element can be inferred.

Figure 30(a) provides 2-D images obtained by digitizing three different

objects. The residues obtained by eroding these objects with two

different erosion sequences will Illustrate the proposed size

* measurement technique as well as introduce the issues associated with

S:.erosi n sequence selection. The erosion sequence Bi, when applied to
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eao h image of Fig. 30(a), results in the images (residues) illustrated

in Fig. 30(b). The residue counts for these images are one, seven, and

eleven for images A,, A2, and A3 respectively. Stated equivalently,

the structuring element B, (a 3x3 square) fit into the state '1' cells

of image A1 once, A2 seven times, and A3 eleven times. Note that the

erosion residue of image A1 implies that the largest area of the image A1

is about the same size and shape as the structuring element B1 The

larger residue counts of images A2 and A3  imply that the structuring

element B1 fit into these images in several positions but, other than

knowing that the images A2 and A3 are larger than B1 , very little can

be concluded about their gross shape. Continuing the example, eroding

the binary images of Fig. 30(a) with the structuring element B2 results

in the residues illustrated in Fig. 30(c). Note that the image A1 could

not contain the structuring element B1 and therefore eroded to the null

set, image A2 eroded to a residue of one, and the image A3 , which had a

larger residue count than A2 for the B1 erosion sequence, eroded to the

null set. Thus, a large count of residue cells does not always indicate

a large object and, in general, larger structuring elements which fit

into an object at only a few positions convey more about the gross

uneroded shape of the object than a smaller structuring element could.

Qualitatively, given the task of attempting to detect (measure) circular

shaped binary objects of a certain diameter, one should select a

structuring element (erosion sequence) which has a maximum width

slightly smaller than the diameter of the circular object and, following

similar logic, has a circular shape. Even with this knowledge, the

large variety of images obtained by digitizing randomly translated disks

C. makes the selection of an appropriate erosion sequence for each
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truncated target top a nontrivial task. Stochastic Geometry (Ref. 9)

has demonstrated some success in establishing statistical measures of

geometrical questions such as this, but these measures are not directly

related to specific geometric shapes of the digitized images.

Therefore, a Monte Carlo simulation was designed to address the question

of what structuring elements were best suited to fit consistently but

not too loosely (i.e. which structuring element fit anuggly) into

digitized randomly positioned disks of various diameters in the absence

of noise.

The Monte Carlo analysis was implemented by randomly positioning

(uniformly) thirty-five circular disks of a given radius onto a

digitizing grid. Since geometrical probabilities do not address

specific geometric shapes, a sequence of trial and error experiments

were used to establish that, for arbitrary random number (translation)I
generator seeds, the relative frequency of occurrence of specific

geometric shapes (resulting from digitizing the randomly positioned

disks) was repeatable if at least 35 disks were used for a given Monte

Carlo experiment. The digitized 2-D binary images of these disks were

then individually eroded by each of the first 12 structuring elements

illustrated in Fig. 31 and the number of cells which remained following

each erosion sequence (i.e. the residue count) was recorded. The radius

of the disk was then increased by .1 unit and the procedure repeated for

disks of radii between 1.5 and 5.5 units. The structuring elements of

Fig. 31 were selected because they represent the mallest symetrical

erosion sequences which can be implemented by combining the basic von

Neunan (S21) and Moore (S2) neighborhoods.

C Ueoalling that the intent of the Monte Carlo analysis was to
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determine which struoturing elements fit snuggly into the digitized

disks, the concept of fitting snuggly had to be bounded. An obvious

lower bound for the residue count of a snug fitting structuring element

was established by requiring the structuring element to fit into each of

the thirty-five events (randomly positioned digitized disks of a

specific radius) at least once. An upper bound on the residue count for

a snug fit must also be established to limit the number of positions

(i.e. limit how loosely) a structuring element can fit into the

digitized disk. The upper bound, however, cannot be arbitrarily

specified since there are only a limited number of structuring elements

available, and one structuring element cannot be declared too loosely

fitting until the next larger structuring element starts fitting

snuggly. The Monte Carlo evaluation, therefore, provided a means to

establish the size of the smallest circular disk within which each

structuring element of Fig. 31 could consistently be contained at least

once for all 35 events. Circular disk shaped objects of radius between

1.5 and 5.5 pixels were thereby partitioned into sets, each set

specifying the size of disks, within which, one of the structuring

elements of Fig. 31 was determined to be snug fitting according to the

residue count criteria described above.

To illustrate the Monte Carlo results, Fig. 32(a) plots the

smallest residue count experienced for the SE1, SE2, and SE3 structuring

elements as applied to the 35 samples of digitized circular disks. As

the radii of the circular objects were increased from 1.5 to 3.5 units,

the point at which each structuring element begins to fit into the

circular objects clearly specifies the lower and upper radii bounds

within which each structuring element fits snuggly. For example, 31

C9:
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did not fit at least once into all 35 randomly translated and digitized

disks until the disks attained a radius of 1.6 units. 31 then

continued to fit snuggly until SE2 started fitting into all 35 disks of

2.1 units radius. Thus, if a circular object had a radius of 2.2 units,

then the SE2 erosion sequence would fit snuggly into this object while

SE1 would fit too loosely and SE3 would be too large. Figure 32(b)

summarizes these results by listing the radii over which the smaller 12

structuring elements of Fig. 31 were determined to be snug fitting.

While these results establish which erosion sequence should be used to

measure circular objects of a given radius based upon the snug fit

criteria, it would also be desirable to understand how well these

selected erosion sequences perform their shape measurement tasks. For

example, when geometrically measuring discrete shapes by counting the

number of cells which remain following an erosion sequence, it would be

(desirable to know that the measurement technique consistently provided

the same residue count regardless of where the circular object was

placed on the digitiztng grid. As an aid in describing this concept,

for a circular object of given size and a specific erosion sequence, the

ie ACI is defined as the set of unique residue counts (integers)

obtained when the continuous object is digitized and eroded at many

random positions on a digitizing grid. Likewise, the residue A2e Araad

is defined as the number of integers separating the largest and smallest

events in the residue set. Small nonzero residue sets and narrow

residue set spreads would, therefore, be desirable since this would

imply that the structuring element not only fit snuggly but also fit

consistently within the digitized images. Figure 32(c) illustrates the

(3 residue set spread function exhibited by structuring elements S11, SE2,
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and S13 as they were applied to 35 saples of digitized circles of radii

1.5 to 3.5 units. More generally, the largest residue net spread

exhibited by the snug fitting structuring elements as defined In Fig.

32(b) was four and was more typically only two or three integers wide.

The desirability of these relatively consistent and narrow residue set

spreads will be further discuused following the next section which

describes the measurement of rectangular shaped binary objects.

Rectangla hasgmnt. This section will describe how an erosion

sequence in seleoted and used in conjunction with a medial axis

transformation (HAT) and an end erosion operation (1ERO) to measure the

size and shape of 2-D binary rectangular objects. The proposed design

addresses the rotational sensitivity of discrete erosion sequences, the

application of MAT and ZERO to extract length and shape information, and

how the goal of low false alarm rate is supported by the algorithm

selection process.

The 2-D binary rectangular features obtained by thresholding the

target bases are significantly more difficult to measure than circular

features because they are not rotationally invarient and, since they

cannot be geometrically described by a single measurement (such as

radius), both length and width measures must be developed. As with

circular features, the basic approach of selecting a structuring element

which fits snuggly into the rectangles (i.e. selecting an erosion

sequence that consistently reduces the rectangles to a small nonzero

number of state 910 cells) can be used to measure the rectangle's

minimum dimension, the width. However, the erosion sequence selection

process is complicated by the fact that the structuring elements are not

round and their ability to fit anuggly into a digitized rectangle is
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highly dependent upon the uncontrolled orientation of the target

Q (rectangle).

Figure 33 conceptually illustrates the relative sensitivity of two

erosion sequences to the orientation angle of a reotanular object. If

we assume that the first erosion sequence exhibits a round equivalent

structuring element of radius w/2, the circular structuring element

(illustrated in Fig. 33(a)) fits into the rectangle at any orientation

and the locus of its center, which represents the residue of the erosion

sequence in this example, provides a rotationally invariant measure of

the rectangle's length. On the other hand, Fig. 33(b) illustrates that

a second sequence of erosions which exhibits a square equivalent

structuring element of width w can only fit into the same rectangular

image at one orientation and, as a result, provides a rotationally

sensitive measure of the rectangle's width and length. Unfortunately,

given a specific rectangular object, the finite number of discrete

symmetrical structuring elements (erosion sequences) to choose from does

not generally allow the selection of one which is circular in shape and

fits snuggly into the digitized rectangular object at all rotations and

translations. Figure 34 illustrates a typical example of how the

limited number of symmetrical erosion sequences forces the system

designer to use a less than ideal erosion sequence and how an additional

operation can be implemented to overcome some of its inherent

limitations. Figure 34(a) illustrates the results of digitizing a 6.4

by 12.0 pixel rectangular object at three different orientations with

respect to the digitization grid. Of course, the original binary images

consisted of all state "I" cells but, since the illustrated images have

( been eroded by the SET structuring element of Fig. 31, the eroded cells
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have been changed to state '0 and the remaining state 010 cells are the

residue of the erosion sequence. Without illustration, it should be

obvious that a maller structuring element such as SB6 would fit into

the original binary images at more positions (i.e. more loosely) than

SE7 and is therefore not as snug a fit and is less desirable for

rectangle width measurement. Likewise, the next larger structuring

element (SE8) is too large to fit into the original digitized

rectangular images at all translated and rotated positions (even though

it does fit into the examples of Fig. 34) and is therefore not a viable

snug fitting structuring element for this sized rectangle. Thus, for

this sized rectangle, the SE7 erosion sequence must be used eveL though

its residue (state 01" cells) is more than one cell thick and a simple

cell count procedure cannot be used to estimate the length of the

rectangle. While there is little that can be done about SET's loose

fit, the medial axis transformation (MAT), described in Chapter III, can

be applied in situations such as this to reduce the residue cells to a

skeleton one cell in width. Figure 34(b) illustrates the application of

the MAT to the residues of Fig. 34(a). Note that the state "10 cells

which were removed by the HAT have been changed to state "H" (for

*illustration purposes) and a simple cell count of the remaining state

"1 cells can be used to estimate the length of the rectangle. Thus,

the MAT will be applied in conjunction with the basic erosion sequence

in each branch of the processor which is designed to measure the length

and width of rectangular objects.

A Monte Carlo analysis was used to determine which structuring

element, when used In conjunction with the HAT, demonstrated both a snug

(fit and an insensitivity to rectangular image translation and rotation.
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In a manner -similar to that used for the circular features, continuous
rectangles of varying minimum dimension (the length was arbitrarily set

to twice the width to prevent telephone-pole shaped rectangles which are

not typical of tactical vehicles) were positioned on a digitizing grid

at thirty-five random translations at seven equally spaced angles over

the interval (0, 45) degrees. Each event (each digitized randomly

positioned rectangle) was then eroded by each of the structuring

elements of Fig. 31, skeletonized by the HAT, and the number of

remaining cells was recorded. Upon reviewing the results of the Monte

Carlo simulation, it became apparent that while a simple 'snug fit*

erosion sequence selection criteria (similar to that used for circular

features) did specify which structuring elements were snug fitting with

respect to the width measurement, this criteria did not establish which

erosion-MAT sequences provided consistent rectangle length estimates.

Fortunately, the residue set spread function (which was briefly

described in the previous section) provides a great deal of information

- " concerning the ro~,ational invariance and length measurement consistency

of an erosion-MAT sequence. Figure 35 provides the residue set spread

functions obtained by Monte Carlo analysis for the typical SE6 and SET

erosion-MAT sequences. For rectangle widths below 4.6 pixels, the

residue set spread is zero for both sequences since neither structuring

element fit into any of these events. As the width of the rectangles

was incrementally increased, the structuring elements began to fit into

the digitized images and increase in size since some events (digitized

randomly positioned rectangles) can contain the structuring element at

several positions but other events cannot contain it at all due to the

rectangle's angle of rotation with respect to the digitization grid.
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The duration and height of this initial relative maximum is directly

related to a structuring element's shape. For example, a square

structuring element such as SE6 will exhibit a wide and high relative

maximum since its size (SE6's diameter) varies significantly as a

function of rotation angle. On the other hand, a less square

structuring element such as SE7 fits into all events shortly after it

starts fitting into some and, therefore, its relative maximum is not

nearly as large as the square structuring element SE6. A truly round

structuring element would, of course, not exhibit any initial relative

maximum at all. Continuing the example, both structuring elements start

fitting at least once into all the events (an occurrence not commonly

experienced) at 6.8 pixels, and it is at this point (circled in Fig. 35)

that the residue set spreads begin to decrease. The sharp decrease in

residue set spread exhibited by SE6 is due to the tendency of square

structuring elements to fit into a rectangular object at many positions

or not at all. Nonaquare structuring elements, on the other hand,

exhibit a more gradual decrease in residue set spread and will, in

general, exhibit a smaller and more lengthy initial relative minimum.

Finally, as the rectangle width is increased, both structuring elements

experience increases in residue set spread due to the increased number

of residue cells which results in increased skeleton variations.

Therefore, the residue set spread function provides both a measure of a

structuring element's roundness as well as a consistency measure for the

length estimate characteristics of the erosion-MAT sequence. In the

example of Fig. 35, assuming for illustration purposes that no other

erosion-MAT sequences are available, both SE6 and SET become snug

fitting with respect to the rectangle's width at 6.8 pixels but, since
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SE6 exhibits a more consistent estimate of rectangle length (i.e. has a

4lover residue set spread) over the interval of rectangle widths from 6.8

to 7.2 pixels, it would be the preferred erosion-MAT sequence in this

interval. SET would then be the preferred erosion-MAT sequence for

measuring rectangles with width greater than 7.2 pixels until a larger

snug fitting structuring element exhibited an erosion-AT residue set

spread smaller than SE7. The preferred erosion-MAT sequences were

established by Monte Carlo simulation for rectangular objects between

2.8 and 12.0 pixels in width by applying this same selection criteria to

the set of structuring elements of Fig. 31. The results are provided in

Table 1. Several erosion-MAT sequences do not appear in the tabulation

because the square shapes of their equivalent structuring elements

prevented them from attaining a narrower residue set spread than other

(snug fitting erosion-AT sequences. In conclusion, for an erosion-AT

sequence to be preferred with respect to the measurement of rectangles

of a given width, not only must the residue counts obtained during the

Monte Carlo simulation be nonzero for all 35 events (i.e. snug fitting):

the sequence must also exhibit the smallest residue set spread.

While the above proposed erosion-HAT sequence followed by a simple

cell count provides a reasonable amount of shape discrimination

capability, the many-to-one property of erosion sequences is a limiting

factor because there are many nonrectangular objects which will exhibit

skeletons with a cell count identical to that of any given rectangle.

Figure 36(a) illustrates three geometrical shapes which have been eroded

using the SE2 erosion sequence and skeletonized by the HAT. As in the

previous example, the state 00O cells specify those state '1' cells of

S C the original image which were eroded by the 3E2 erosion sequence and the
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46 TABLE I

PREFERRED EROSIN-MT SEQUENCS
FOR RECANGULAR OBJECTS

(REF. FIG. 37)

STRUCTURING RECTANGLE WIDTH
ELEMENT_ FROM_ TO

SE 3 4. 5.3 7.

SE 6 7.0 7.2

SE7 7.2 9.0

SEll 9.0 10.5

SE 12 10.5 12.0

*PIXElS
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state OM4" cells specify the cells of the residue which were removed

(during the skeletonizing (MAT) procedure. Note that a simple cell count

at this point would not permit the processor to discriminate between

these shapes because they all have 9 cells in their skeletons. To

improve the ability of the processor to discriminate between rectangular

skeletons (skeletons which typically have a single long limb) and

objects which have multiple limb skeletons, an end erosion operation

(EEO) was implemented in the branches of the processor which were

designed to measure rectangular features. Figure 36(b) illustrates the

results of removing 3 state "1" cells from the ends of each of the

skeletons of Fig. 36(a). Since the skeletons of the round and the

irregular shaped objects had multiple limbs, the number of state 010

cells in each limb was small and the skeleton was completely eroded by

the end erosion operation. However, since the single limb of the

rectangular object was long, 3 state "I" cells remained following the

EERO. Thus, the EERO has provided a convenient means of providing an

improved shape discrimination capability to the cellular logic

processor.

In summary, the rectangular images are measured in both width and

length by applying an erosion sequence in conjunction with the medial

axis transformation. An end erosion operation is then applied to

improve the processor's rectangle shape discrimination capability. The

next section will describe the decision criteria and how they combine

with the feature extraction algorithms to support low probability of

error and false alarm rate goals.

e Da l Cr itera

C While the earlier sections of this chapter have concentrated on
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describing the algorithm selection process and the numerous innertwining

4relationships cellular logic feature extraction approaches exhibit, this
section will describe the criteria by which decisions are made. Before

proceeding, however, Fig. 37 provides a summary of the processor

architecture which illustrates the 3-D noise filter, the thresholding

operations, the selected erosion sequences, and the MAT and EERO

operations for the three branches designed to detect rectangular

objects. Following these shape measurement operations, the feature ac-

cept or reject decision is effected by comparing the residue count (ri )

of each branch to an acceptance window (AWi) designed specifically for

that branch. Finally, following this comparison, the output states of

all six branches (labeled Li through L6 in Fig. 37) are logically

compared to affect a target class decision.

The decision criteria proposed in the following two sections can be

(1 summarized as follows:

(a) develop accept-reject regions for each feature and target class

by applying a likelihood ratio test to the class conditional pdf's

experimentally obtained via introducing a synthetic training set of

targets to the processor of Fig. 37.

(b) logically combining each branch's output state (feature

detected or not detected) to affect a target class accept-reject

criteria. This approach to designing decision criteria is often used in

pattern recognition tasks because it is simple to develop and implement

and also permits a great deal of flexibility in acommodating a priori

information concerning the reliability of feature detection between

target classes. Since the proposed decision criteria does not, for

C example, apply a likelihood ratio test to the joint (for all
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branches/features) class conditional pdft', the proposed design criteria

performance may not be equal to that theoretically possible (Ref. 5).

However, as will be described later, the flexibility attained by

applying the proposed decision criteria permits adjustments to be made

to the decision logic that can significantly improve the potential

probability of detection without significantly increasing the error

rate. The feature accept or reject decision criteria will first be

described.

Feature Aeanc ndow DeAsig. As earlier described in this

chapter, each branch of the six branch processor is designed to detect

objects which are similar in size and shape to a feature of one of the

three target classes. Following the shape measurement algorithms

indicated in Fig. 37, a basic residue cell count operation is

(implemented. Since every object presented to the processor passes

through each of the six branches, a set of three sample class

conditional probability density functions (pdf's) can be estimated for

the residue counts of each branch by presenting digitized randomly

positioned training samples of each target class to the processor.

Figure 38 provides an example of a set of class conditional pdf's for

ththe i branch of the processor where the abscissa value indicates the

residue count (i.e. the number of state 01 cells which remain)

following the feature measurement algorithm and the ordinate value

indicates the relative frequency of occurrence of each abscissa value

experienced for 35 training samples of each target class. Note that the

sample pdf's obtained in this manner are conditioned on a target class

and apply only to the ith branch since the threshold values and feature

measurement algorithms vary from branch to branch. Since Fig. 38
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TABLE II
BRANCH ACCEPTANCE WINDOWS

(Ref. Fig. 37)

Awl - [.2,3,4] Aw - .4,5,6

AV - [2,3,4] AW 5 -[4.,]

Aw W3 It 1.2,3,] Aw 6 -[2.3.4.5]
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actually represents the sample pdf'a for the third branch which is

designed to detect the smallest circular feature (i.e. the tops of class

3 objects), it is not surprising that the residue counts of class 2 and

class 3 objects are quite similar. This is, of course, due to the fact

that the tops of class 2 and 3 objects are similar in size. Likewise,

since the binary images obtained when thresholding class 1 objects at

the branch three threshold height are large, the branch 3 erosion

sequence does not erode a large portion of the class 1 thresholded tops,

and the residue counts are large and easily discerned from the eroded

tops of class 2 and 3 objects. When two class conditional pdf's share

common abscissa values as do classes 2 and 3 of Fig. 38, the application

of a likelihood ratio test (Ref. 27) results in an acceptance window of

(1,2,3,4) for the circular feature of class 3 objects. When used In

conjunction with a symmetrical cost function and equal a priori class

probabilities, the likelihood ratio discriminant results in minimum

misclassification error rate performance which is oonsistant with

processor design goals.

In summary, the feature acceptance window for each branch is

designed by presenting 35 randomly positioned digitized training samples

of each target class to the processor, estimating the class conditional

probability density functions for the residue counts observed in each

branch of the processor, and then applying a likelihood ratio test to

establish the residue counts that are acceptable for an unknown object

to be classified as containing the feature associated with each branch

of the processor. Each branch of the six branch processor will thus

have a single acceptance window, and an unclassified object will be

C determined to exhibit a specific feature only if the residue count of
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that object is an element of the feature acceptance window of the branch

designed to detect that feature. The acceptance windows for the

processor of Fig. 37 are summarized in Table 2. If nontarget objects

(clutter, noise, trees, other vehicles, etc.) art resented to the

processor, the residue counts exhibited by each branch may fall anywhere

on the abscissa depending upon the statistical geometries of the

nontarget objects. Thus, narrow acceptance windows become highly

desirable to minimize the probability of false alarms, and the earlier

techniques used to determine which erosion sequences provided small

residue set spreads should now be better understood. Once an object has

been processed by all six branches, a determination must be made as to

whether the unknown object is a member of one of the three target

classes.

Me Target Class Decision. Two target class decision criteria will

(be presented. The first requires exact classification and decreases the

probability of error at the expense of detection performance to a point

where a Pd of 1.0 is not possible even in the absence of noise. The

second decision logic approach is less restrictive and provides for

significantly improved performance by accommodating feature similarities

between target classes.

Following the comparison of each branch's residue count with its

acceptance window, the lines labeled Li through L6 in Fig. 37 will be

defined to be in state "T" if the residue count is an element of that

branch's acceptance window and in state OF3 otherwise. Thus, for an

unidentified object to be classified as a member of a specific target

class, the most restrictive decision criteria would require that the two

(I branches designed to detect the top and base of that target class be in
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state "TO and the remaining four branches be in state OF". For example,

the processor would classify an object as a member of target class 3 if

the outputs of the third and sixth branches (L3 and L6) were in state

wTO and the branches L1, L2, L4, and L5 were all in state OF Table 3

summarizes this strict target class decision criteria. While simple in

design t id implementation, this strict decision criteria does not take

into account that the tops of class 2 and 3 targets are very similar in

size as are the bases of class 1 and 2 targets. By relaxing the

decision criteria to permit the target class acceptance states as

described in Table 4, the performance of the six branch proesor can be

significantly improved. Of course, since the acceptance states of Table

3 are a subset of the acceptance states of Table 4, the Pd of the

relaxed decision criteria will be higher than that of the strict

(decision criteria. On the other hand, since more acceptance states are

allowed in the relaxed decision criteria, its false alarm rate will be

larger than that of the strict decision criteria. Quantitative analysis

of these relationships can, in general, only be accomplished by

extensive field tests or, when clutter and noise models are available,

by Monte Carlo simulations. Rowever, one would not expect the relaxed

decision criteria to exhibit a noticeable increase in misclassification

rate because the tops of class I targets and the bases of class 3

objects are easily separable due to their unique sizes. A qualitative

performance comparison of the strict and relaxed decision criteria as

applied to an arbitrary easure of false alarm rate is provided in the

following chapter.

In sumryp the processor design approach described in this chapter

C provides a systematic approach to neighborhood transformation pattern
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STRICT DECISION CRITERIA

ACCEPTABLE BRANCH STATES

Ll L2 L3 L4 L5 L6

Tgt. I T F F T F F

Tgt. 2 F T F F T F

Tgt 3 F F T F F T

TABLE IV

RELAXED DECISION CRITERIA

ACCEPTABLE BRANCH STATM

Li L2 L3 L4 L5 L6

T F F T F F

T-..t. I T F F T T F

T F F F T F

F T F F T F

F T F T T F

F T F T F F

oTgt.2 F T T F T F

F F T F T F

F F T I T F

F T T T T F

F T T F F

F F T F F T

Tgt. 3 F T T F F T

F T F F F T
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recognition algorithm selection. Inherent to the systematic search

(design approach are several unique and productive algorithm measures of

effectiveness which not only accommodate the complex geometrical

probabilities associated with the application of discrete neighborhood

structuring elements to digitized randomly positioned targets, but also

provide a precise method of relating various performance parameters to

the algorithm selection process. The concept of describing neighborhood

transformations as structuring element operations has been described in

the literature (Ref. 11) and is a significant aid to understanding the

general effects of applying various neighborhood transformations to a

pattern recognition task. However, the unique concepts of snug fitting

structuring elements and residue set spread functions provide a

systematic approach its quantifying algorithm optimality with respect to

the desired performance criteria. The snug fit criteria insures that,

in a noise free environment, an algorithm is selected that detects all

targets presented to it and thus makes the potential probability of

missing a target zero. The residue set spread, on the other hand,

provides a method of directly relating the algorithm's potential false

alarm rate to an assumed or measured model of clutter or nontarget

objects. Additionally, minimizing the residue set spread is

complementary to the goal of high probability of detection since it

encourages selection of an algorithm which provides a conistant measure

of a target object and is relatively invariant to target translation

and rotation. Finally, the design approach is complemented by the use

of a likelihood ratio test which provides a well understood method of

relating misolasaifioation rates to the overall processor design. The

proposed design approach can be readily extended to the measurement of
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parbitrary shaped geometrical objects in two or three dimensions.

4 This completes the description of the processor 
design. The next

chapter will describe a Monte Carlo 
performanCe analysis of a processor

designed in accordance with the procedures 
and design rules established

in this chapter.

I
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V.L Prfrmance Analzva
v.'. -tyt

This chapter describes the results of a Monte Carlo performance

analysis of a target classification processor constructed according to

the algorithm selection procedures and decision criteria established in

Chapter IV. The Monte Carlo analysis is not designed to rigorously

characterize the performance of the proposed processor design approach

but is designed to provide insight to the sensitivities of the design

and to investigate the validity of some of the assumptions made during

the design process. For example, the sensitivity of the design to data

which has been corrupted by additive noise or has been distorted by

platform instabilities is always of interest to the algorithm designer.

Likewise, an arbitrary measure of false alarm rate would provide a means

of comparing the strict and relaxed decision criteria. The performance

analysis also provides an opportunity to compare issues such as the

relative performance of the processor in the presence of white

(statistically independent) vs. correlated additive noise and also

encouraged the development of a normalization technique which permitted

a direct comparison of the processor's performance as applied to

features which contained different signal (energy) content. Thus, while

the performance analysis does not attempt to rigorously characterize the

performance of the design approach of Chapter IV, it does provide much

useful insight to the utility of neighborhood transformations in general

as well as the specific design proposed.

Performance Defined

The performance of the processor shall be defined as the relative

frequency at which tee processor correctly identifies the class to which
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an unlabeled target belongs. While the probability of false alarm is

not accommodated in this definition of performance, a comparative

measure of the false alarm rate for both the strict and relaxed decision

criteria will be provided later in this chapter.

Ideally, a typical performance curve would describe probability of

detection (P d) as a function of a parameter which is independent of the

specific features selected such as a ratio of the noise and signal

(n/s). In such a ratio, the signal (s) selected must be appropriately

related to the signal content of the features selected and the target

models from which they are extracted. The noise (n) portion of this

ratio is commonly a measure such as the standard deviation of the noise

source, and the noise is incrementally increased from zero until the

processor performs poorly. The desirability of presenting performance

as a function of a noise-to-signal ratio and the concept of using only

the signal level associated with the peformance limiting feature can be

best illustrated by the following simple example.

Given a 3-D target model and a processor which has two branches

designed to extract and measure the circular and rectangular features as

described in Chapter IV, Monte Carlo simulations were used to determine

the set of integers (the residue counts) for each feature/branch as the

target model was randomly positioned on the digitizing grid. Using

these acceptance windows and the same sequence of random positions,

white Gaussian noise was added to the 3-D data and the relative

frequency at which the noise corrupted 3-D data exhibited a residue

count which fell within the acceptance window for each feature was

plotted in Fig. 39(a) for various levels of noise. Note that the

circular feature was significantly more sensitive to the additive noise
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than was the rectangular feature. This difference in sensitivity is, of

course, directly related to each feature's threshold height above

background since the 2-D binary image of each feature can only be

distorted if the additive noise changes a background cell to exhibit a

height above the threshold value or a cell which is normally (without

noise) above the threshold to exhibit a height lower than the threshold.

Thus, the reotangular feature has a signal level equal to one-half the

height of the rectangular base of the target model since this is the

rectangular feature's threshold height above background. The circular

feature, however, exhibits a signal level equal to its threshold height

minus the height of the top surface of the target's rectangular base.

In the target model used in this example (and for the target models of

Fig. 22), the signal of the rectangular feature was about three times

the signal of the circular feature. Figure 39(b) illustrates that by

normalizing the performance curves of Fig. 39(a) to each feature's

signal level (threshold height above background) the processor can

detect circular features nearly as well as it detects rectangular

features. Thus, by plotting the performance curves as a function of the

noise to signal ratio, a feature independent view of the processor's

performance can be established. Finally, if the strict decision

criteria of Table 3 is invoked, (i.e. both features of a target must be

exactly detected), the ability to detect a target can be no better than

the processor's ability to detect the performance limiting (smallest

signal) feature. Thus, when both features are required parameters in

the decision process, the processor's performance should be normalized

to the signal level associated with the performance limiting feature.

Normalizing the joint performance to a larger signal value would make
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the results unnecessarily pessimietic and inappropriate for performance

comparison with prooessors which incorporate different features. In

summary, the signal level associated with the circular features is the

performance limiting signal and the processor's overall performance

curves will be normalized to the average signal content of these

features.

2h& AlyZ tAa kro re and Rmlt

Monte Carlo techniques were used to both train the processor (i.e.

design the acceptance windows for each branch) and to evaluate the

processor's performance. The 3-D data used for both training and

evaluation purposes was analytically generated by simulating a nadir

viewing line scanning range sensor and incorporated the ability to

simulate sensor platform roll rate, pitch rate, and altitude variations.

A typical performance analysis would first generate 105 samples of 3-D

data (35 randomly positioned samples of each target class). Each of

these samples would be corrupted by additive noise and then be processed

by the processor. The performance parameter Pd would then be cstimated

to be the relative frequency at which the samples were correctly

classified by the processor.

Geometrical probabilities and discrete sampling constraints

dictated that the algorithm training set contain rotated as well as

translated target images. To accommodate rotation, the target images

were sampled at seven equally spaced intervals between zero and 45

degrees to approximate a uniform distribution. Each target image was

also randomly translated with respect to the digitizing grid (uniformly

distributed over the interval [0,1]) to provide a representative sample

of digitized geometrical images. The total ample size of 35 randomly
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translated and rotated target images was the result of a compromise

between computational constraints and the always desirable large sample

size. Several algorithm training and evaluation sample sizes of between

10 and 100 randomly translated and rotated targets were tried and the

figure of 35 was settled upon because a larger sample size did not

generally change the feature's class conditiional relative frequency of

occurrence plot (pdf's), the feature's accept-reject regions, or the

processor's overall performance. As an additional check, the random

translation number generator seed was also changed and, for sample sizes

of 35 and larger, the design and performance of the processor remained

stable. Thus, based upon these experiment observations, the sample size

of 35 randomly translated and rotated target images for each target

class was established as reasonable to demonstrate the utility of the

processor design approach.

MM fLro r gI:nranae. As defined earlier, the

performance of the processor is the relative frequency at which the

algorithm under evaluation correctly classifies a target object.

Figures 40(a) and (b) describe the performance of the six branch target

classification processor of Fig. 37 for the strict and relaxed decision

criteria of Tables 3 and 4 respectively. These results are obtained by

adding increasing amounts of Gaussian distributed noise to the

synthetic randomly translated and rotated target samples which were used

during training of the processor and then representing these distorted

images to the processor. While not illustrated, the introduction of

correlated noise to the target samples did not as adveraly affect the

performance of the processor as did the statistically independent noise.

4Several different random number (noise) generator seeds were used for
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comparison purposes and in no case did the performance of the processor

vary by more than 7% from the performance illustrated. Observe that the

relaxed decision criteria enabled the processor to attain a Pd of 1.0 in

a noise free environment whereas the highest attained performance for

the strict decision criteria is 0.75. This was due to the inability of

the strict decision criteria to use a priori information concerning

similarity of features within target classes 1 and 2 and classes 2 and

3. Also observe that for the features selected and the noise applied,

the 3-D local average and 3-D closure noise filters both perform

significantly better than the 3-D opening filter. As described in

Chapter IV, this characteristic was due to the initial 3-D erosion

implemented with the 3-D opening operation which removes small convex

surface irregularities (such as the truncated conical tops of the

targets) when corrupted with a negative noise pulse. As hypothesized in

Chapter IV, the relaxed decision criteria provided for significantly

improved performance. However, without a comparison of relative false

alarm rates, the cost (increased false alarm rate) of implementing the

relaxed criteria cannot be properly presented.

False Alarm Rate. Without validated models of clutter and

nontarget objects, it is not generally possible to obtain a quantitative

estimate of false alarm rates. However, the topographical contours of

many geographical areas can be used to suggest modeling 3-D terrain data

as a two-dimensionally correlated random process. While most terrain

cannot be exactly modeled as such (Ref. 4), a two-dimensionally

correlated Gaussian random process does provide a random medium againat

which the relative false alarm rates of the strict and relaxed decision

4 criteria can be compared. For example, if the technique described by
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Moshman (Ref. 17) is used to generate an array of correlated noise, and

this noise is threaholded at the two heights, specified by the target

models for the rectangular and circular features, the resulting binary

image could be input to the processor and the resulting number of false

alarms would provide a measure to compare the relative false alarm rates

for the strict and relaxed decision criteria.

To accomplish this, 100 60x60 maples of 2-D correlated Gaussian

noise with correlation distances ranging from one to five cells and

standard deviations between four and sixteen cells were applied to the

processor of Fig. 37. Figures 41(a) and (b) illustrate the results of

applying one such noise sample to the 2nd and 5th branches respectively.

The state 01" cells are the cells which remained following the feature

extraction algorithms and the state "E" cells in Fig. 41(a) represent

the skeleton cells which were eroded (changed to state "0") by the end

erode operation. Note that in the lower central portion of Fig. 41(a)

there is a binary object which eroded to a residue count of three state

011 cells and in Fig. 11 (b) the same area (at the higher threshold for

the circular feature) the residue count was five. Thus, Fig. 141

illustrates one of the few samples of noise that exhibited a false

alarm; a class 2 target for either the strict or relaxed decision

criteria. Out of the 100 samples of correlated noise, only two

exhibited false alarms for the strict decision criteria and three more

false alarms were observed when the relaxed decision criteria was

applied to the same samples of noise. While it is rather arbitrary to

apply confidence measures to these results (since the size of the noise

samples is large compared to the targets), if one considers that each

ample contains four 30x30 samples of noise (and any of the targets can
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easily fit into this size matrix), then there are a total of 400 noise

samples and the probability is at least .95 that the utrue" false alarm

rate for either decision criteria is less than .05 (Ref. 5). Thus, the

relaxed decision criteria increased the false alarm rate but still

provided a relatively small false alarm rate in the presence of

two-dimensionally correlated Gaussian noise.

Ad ±gM~ Xgg& Characteristics. The previous analyses have

assumed perfect control or knowledge of the dynamic characteristics of

the sensor platform. The sensitivity of the proposed processor design

to geometrical distortions of the 3-D data which may be induced by

uncorrected sensor platform pitch rates, roll rates, or altitude errors

will now be presented.

Figure 42 describes the performance of the processor of Fig. 37

(using the strict and relaxed decision criteria) when the resolution

(scale) of the 3-D date is varied by as much as 5 percent. This form

of distortion will occur if the sensor platform is not at the proper

altitude above the terrain or if a nadir sensor is oriented slightly off

vertical. The nonsymmetrical performance degradation for equal

increases (+) or decreases (-) in target scale are due to the discrete

nature of the available symmetrical erosion sequences. While it is

obvious that the curves of Fig. 42 can be used to determine the

sensitivity of the processor to altitude fluctuations of the sensor

platform, they can also be used to assist in selecting a platform

altitude which provides a balanced performance degradation for equal

uncontrolled variations around the nominal platform altitude. Finally,

while not conclusive, these curves indicate that the feature extraction

(algorithm selection procedure described in the previous chapter can be
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used to separate geometrical objects which differ in scale by about 2.5

percent. While a sensor platform which exhibits a constant altitude

error will result in improperly scaled 3-D data, the 3-D data may also

be distorted by sensor platform pitch and roll rates.

Figure 43(a) summarizes the sensitivity of the processor of Fig. 37

to several different values of roll rate using the relaxed decision

criteria. The roll rates indicated are derived from several assumed

parameters used in the simulation; an angular resolution of 10- 3

radians, a dwell time (per pixel) of 10- 6 seconds, and a row (scan line)

length of 1000 pixels. Figure 43(b) provides an example of the

thresholded base of a class 3 target for a stable platform and a

platform exhibiting a roll rate of .5 rad/sec. Figure 44 provides

similar performance characteristics for the same processor but in this

case, for various levels of platform pitch rate. The increased

sensitivity of the processor to pitch rate is due to the assumption that

the forward motion of the sensor platform provided the scanning motion

in the direction of flight. Thus, while the entire target would be

scanned at full resolution under a platform roll rate environment, pitch

rate would induce an undersampling of the targets. As a result, roll

rate resulted in skewed objects with proper dimensions and pitch rbte

resulted in skewed objects with scale variations in one dimension. This

effect would be observed in any line scanning data collection system.

Since the acceptability or unacceptability of the Chapter IV

processor performance (as determined during this Monte Carlo simulation)

is a dynamic issue and is dependent upon the appropriateness of the

assumptions made during the design and the risks and costs associated

4with the specific operational application of the processor, it is
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appropriate to address these issues before proceeding to conclusions and

recommendations.

ItUl World Cosia tionU s

The results presented in the previous sections deserve additional

discussions concerning the application of such a system in a less

academic environment.

.MM Flat Terrain AitMnkJ~a. Early in this investigation, the

assumption was made that the terrain was flat so that the Ofirst order*

sensitivities of the proposed processor design could be observed. While

some topography may be compatible with this assumption, most

geographical areas would not. This, of course, introduces a potential

design deficiency since the feature extraction technique (height

threshold) generally requires that the targets be placed on a surface

which is normal to a vertical line connecting the sensor to the target

so that the extracted features are rectangles and circles. However,

even though the flat terrain assumption appears quite limiting, the

existence of an imaging range sensor on board the scannir platform does

provide much of the information necessary for the carrier platform to

follow the contour of the terrain as accurately as its aerodynamics and

guidance system permits. Thus, while this may be an unrealistic request

for a large aircraft, a small lighter vehicle such as a remotely piloted

vehicle or cruise missile may well be capable of adjusting its

trajectory quickly enough to remain at a relatively constant altitude

above some smoothly varying terrain surfaces and, in doing so, the

scanning platform would remain approximately parallel to the surface.

As alternatives, a random bias filter has been suggested by Sternberg

C (Ref. 24) which essentially performs a high pass terrain removal
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operation on 3-D data, and Miller (Ref. 15) has suggested that

C three-dimensional features (volumea/solids) and shape measurement

techniques would be less sensitive to the varying terrain heights. Note

that the snug fitting algorithm selection process described in Chapter

IV could easily be adapted to three-dimensional features. Thus, while

the flat terrain assumption may not be representative of typical

operational environments, reasonable vehicle designs, tactics, and

terrain removal filters could make the proposed simplistic algorithm and

processor design approach quite applicable to operational

implementation.

.UM Nadir A aUM~±m. The second assumption which has operational

implications is that of the nadir (down looking) range measuring sensor.

Historically, tacticians have preferred to look forward rather than down

so that the targets are detected (and attacked or avoided) prior to the

L - scanning platform arrival. Logically, this improves the survivability

of the platform and permits the targets to be attacked head-on (like the

well known Kamikaze tactic). Commercial enterprises have yet to solve

the deceptively simple task of constructing a machine which can read

uncontrolled printed text as well as a typical eight year old child.

When this task is compared to that of classifying tactical targets which

are located hundreds of meters away and are controlled and disguised by

equally intelligent human beings, the difficulty of the task becomes

quite apparent. Therefore, when technology has provided a data base

which is relatively insensitive to diurnal variations and nature has

provided a viewing position (nadir) which drastically simplifies the

geometries associated with the target acquisition task, tactics,

vehicles, and munitions should be developed to exploit thee
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opportunities. Perhaps the first truly reliable and autonomous taroet

(acquisition and classification capability could then be demonstrated.

ja JAMI at anda . The angular resolution of the

sensor, when combined with the sensor platform altitude and look angle,

determines the cell size of the digitization grid. The resolution

assumed for this analysis resulted in the smallest target containing

about ten cells for the mallest circular feature and over two hundred

cells for the larger rectangular features. The range resolution was

arbitrarily set at one tenth the angular resolution since range can be

very accurately estimated by laser ranging devices. Whether tactical

vehicles can be afforded the luxury of such high quality sensors is a

technology issue better left for others to resolve. The observation to

be drawn from the performance results is that given angular and range

resolutions of this magnitude, the autonomous classification of tactical

( - vehicles appears quite feasible - - even when conservative (with respect

to low probability of error and false alarm rates) processor design

rules are implemented.

Feaofilily.2f mnta n . So far, the design of a cellular

logic target classification processor has been proposed and its

performance has been parametrically evaluated via Monte Carlo simulation

for sensitivities to additive Gaussian noise, scale, roll rate and pitch

rate. This section will address the feasibility of using 'off the

shelf* hardware to satisfy the scale, pitch and roll rate limitations

imposed by the conservatively designed processor.

The peformanoe ourves of Fig. 41 indicate that the processor can

accept scale variations in the 3-D data as large as 2.5 percent without

C drastically reducing the performance of the processor. For a nadir
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viewing sensor at an altitude of 10 cell diameters, this would imply

(that the sensor platform would have to remain within an altitude windo,

of A 25.0 cell diameters to insure that the scale of the 3-D data

remained within the & 2.5 percent allowable tolerance. The ability of

an airborn platform to remain within such an altitude window is, of

course, dependent upon the control characteristics of the pilot or

autopilot as well as the weather and the nature of the terrain.

Fortunately, the accurate range (altitude) information available to the

pilot/autopilot should, weather permitting, make the task feasible for a

reasonably responsive vehicle.

With respect to the roll and pitch rates, sensors are generally

mounted on stabilized platforms within the carrying vehicle to isolate

the sensors from the dynamics of the vehicle. Figures 43 and 44

illustrate that pitch rate is more restricting than roll rate and

requires to be less than .05 rad/sec for reasonable processor

performance. This, of course, is a very easy specification for modern

day stabilized pl atforms to satisfy, and even suggests that, under these

assumptions, a stabilized platform may not even be needed. However,

more system oriented investigations will be required before such a

suggestion can be seriously consideeed.

A able Re. rfrmance. The definition of "acceptable performance*

in an operational environment must remain flexible due to the values and

risks associated with various targets and scenarios. If an extremely

low false alarm rate is required, such as when friendly forces are in

the area, a probability of detection significantly less than 1.0 may be

quite acceptable. Conversely, if the targets were in a free fire zone,

widening the acceptance windows and/or deleting the performance llm i ng
C"
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feature and relaxing the decision criteria could provide a probability

of detection of 1.0 for relatively large noise-to-signal ratios. Of

course, a high Pd obtained in this manner may well result in the

destruction of a large number of trees, rooks and barns so such a weapon

must be cheap and plentiful. Thus, the decision was made in Chapter IN

to design the processor to reasonably low false alarm and error rates,

and to require the exact separation of the three target classes. This

provides a pessimistic estimate of processor performance but leaves the

option to adjust various parameters to increase the probability of

detection or probability of false alarm rates as tactical requirements

allow.

DjSALUM St Results

The results of the Monte Carlo performance analysis confirm the

utility of developing target classifl ation algorithms in accordance

with the "cookbook* procedure described in Capter IV. In general, the

performance of the design was severely degraded when additive Gaussian

noise was added to the 3-D date so that the noise to signal ratio was

greater than 1.0. The performance was also significantly influenced by

the use of 3-D noise filters. While it is clear that the 3-D opening

noise filter is not suitable for use with the features selected and the

noise as modeled, either the 3-D local average or the 3-D closure noise

filters appear to perform quite well, but additional testing would be

required to establish which of the two is beat. Likewise, the relative

insensitivity of the proposed design to platform instabilities of roll

and pitoh rate are very promising, but the absolute extent of these

trends remain unresolved. However, it is clear that a relatively

inexpensive stabilized platform may be all that is needed to isolate the
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sensor (data) from platform motion. On the other hand, scale (altitude)

( variations of more than ± 2.5% significantly reduced the performance of

the processor. Sensitivity to scale variations are common to most

pattern recognition tasks. If additional insensitivity to scale

variations is required, scale invarient features such as length-to-width

ratios or invarient moments could be used. The general algorithm

development approach of Chapter IV could readily be adapted to these

features as well. Finally, the arbitrary measure of false alarm rate

was not designed to establish performance as such, but was included to

measure the relative difference between the strict and relaxed decision

criteria.

Since a generally applicable definition of acceptable performance

does not exist, the performance of an algorithm designed in accordance

with Chapter IV procedures must be carefully evaluated with respect to

the task at hand. Specifically, one must compare the risks associated

with not detecting a target to the costs of declaring a nontarget object

a target of interest. Since such an evaluation was not intended, and,

recognizing that costs and risks are often variable or difficult to

define, the Chapter IV design approach has provided an algorithm

selection technique which provides a relatively low false alarm and

error rate. Thus, if improved performance is desired, a relaxed

decision critoria can be applied or the feature acceptance windows can

be widened. Of course, any improved performance attained in this manner

would be at the risk of increased potential false alarm rate. As

indicated at the beginning of the chapter, the purpose of this

performance analysis was not to exhaustively characterize the

I performance of the processor but was designed to demonstrate the
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potential utility of the Chapter IV neighborhood transformation( algorithm design approach and to characterize its relative sensitivities

to several common forus of noise and data distortions.
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VI. Concuions And eomndakLena

C
The following conclusions can be made concerning the uniqueness of

three-dimensional range data, the snug fitting feature measurement

algorithm selection prooedure, and the results of the Monte Carlo

performance analysis.

1. Actively collected high resolution range data provides a

significant technical opportunity for the designers of tactical

target classification seekers because:

a. The data is unique in that it is relatively free from the

diurnal variations which have historically complicated the

tasks of noise removal and feature selection and extraction in

passively collected image data.

.b. The multi-level information contained in 3-D range data is

directly related to the three-dimensional shapes of objects

within the scene rather thar the thermal emissivity or optical

reflectivity of the scene. This permits the use of features

which are direct measures of the three-dimensional shapes of

the targets.

o. The consistency of the data and the data's direct

measureaent of geometrical shapes provides for the realization

of simple, well understood, and believable target, nontarget,

and baokground/olutter analytical models which aay be used in

extensive Monte Carlo simulations for performance analysis.

The potential for such a realizable target/clutter model will

permit analytical estimates of a system's performanoe,
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including false alarm rates, to be estimated without

initiating extensive flight teats for data collection

purposes.

2. The use of two- and three-dimensional equivalent structuring

elements to describe cellular logic operations provides useful

insight to the geometrical interpretation of sequences of erosion

and dilation neighborhood transformations.

3. The Chapter IV algorithm design approach uses the unique

concepts of residue set and residue set spread to permit the

evaluation of a neighborhood transformation's feature extraction

effectiveness to proceed in a "cookbook* manner. Thus, given an

arbitrary feature extraction technique, a look up table can be

developed to identify the specific sequence of neighborhood

transformations which demonstrate

(a. the ability to consistently extract that feature in a noise

free environment

b. the lowest potential false alarm rate (assuming uniformly

distributed clutter/false alarms), and

a. the most relative invarianoe to object rotation and

translation.

4. The utility of applying the cellular logic algorith, selection

procedure and decision criteria of Chapter IV was demonstrated by

* the development of a 3-D target classification processor which,

under various scenario and processor architecture asmptions,

exhibits the following characteristics:

a. the performance of the processor does not degrade

significantly if the scale of the data (altitude of the senmor
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platform) remains within : 2.5 per cent of nominal and the

( roll and pitch rates of the sensor are kept at rates easily

attainable by commercially available stabilized platforms,

b. compared to the strict application of a likelihood ratio

test, the relaxed decision criteria (which accounted for the

similarity of features between target classes) improved the

processor's probability of detection (Pd) from .7 to 1.0

without noise and, in the presence of white additive Gaussian

noise, improved the Pd from .4 to .7 at a noise-to-signal

ratio of about 1.0,

o. the probability is .95 that the false alarm rate for both

the strict and relaxed decision criteria was less than 5 per

cent in the presence of two-dimensionally correlated Gaussian

noise.

1. The algorithm efficiency measures of residue set and residue

set spread have demonstrated the feasibility of characterizing the

performance of neighborhood transformations. Additional

investigations into the performance characteristics of neighborhood

transformations may lead to a more powerful means of describing

their performance. It is entirely feasible for graphical

characterizations, similar to a receiver operating characteristic,

to be developed for neighborhood transformations.

S 2. While the Chapter IV design approach provides a well organized

means of eleoting a specific sequence of neighborhood

transformations to accomplish a task, it is conditioned upon a

C gseral approach (to feature measurement) belog defined.

1~3
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Unfortunately this general approach is presently developed in an ad

jhoc manner and, once selected, the implementation of an algorithm

may not be optimal with respect to accomplishing the algorithm in

the fewest number of steps/stages. Likewise, the lack of a

suitable probability space for a large class of neighborhood

transformations limits our understanding of algorithm performance

to Monte Carlo or trial and error analysis. The development and

characterization of a robust neighborhood transformation algebra

would significantly improve our ability to address these issues.

3. A statistically formulated generic 3-D data model which is

suitable for use in Monte Carlo simulations and incorporates

terrain, clutter, vegetation, nontarget and target objects should

be developed so that improved estimates of performance including

false alarm rates can be established. This model should

incorporate a 3-D coordinate transformation capability to provide

for other than nadir look angles.

4. A processor of similar design but which extracts, measures, and

accepts or rejects features entirely in three space should be

evaluated for comparison purposes. This processor would use all

the shape information available in the 3-D data rather than only

two slices as in the Chapter IV processor design and would be less

sensitive to the flat terrain assumption.

5. Simplified processor architectures which incorporate fewer than

one branch per feature-target class should be evaluated for

performance. While such simplificationa will generally provide for

less optimal algorithm selection and an increase in false alam

rate, they should be considered for processor size, weight, and
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cost reduction purposs--especially since a generic 3-D data model,

as suggested above, could be used to evaluate the p vs P

tradeoffs associated with thes* designs prior to constructing

hardware.
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